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Asset pricing

The main modelling ingredients of an asset pricing framework are:

(A) The stream of cash-flows.

(B) The pricing kernel, i.e. interest rates and market price of risk.

(C) The market filtration, i.e. the market information.

The aim is to construct coherent asset pricing models.

Such models shall be constructed in a logically-connected and consistent
manner, shall have a natural design, and shall form a unified whole.

A modern asset pricing framework should be coherent across asset classes, and
ensure consistency for the pricing of assets and the risk management of asset
portfolios.
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We model a financial market by a filtered probability space (Ω,F , {Ft},P),
where {Ft} denotes the market filtration, and P is the real probability measure.

The price St at time t ≥ 0 of a dividend-paying asset with a terminal random
cash flow ST at the fixed time T ≥ t is given by:

St =
1

πt
EP
[
πTST +

∫ T

t

πuDudu

∣∣∣∣Ft] . (1)

The pricing kernel process {πt}0≤t determines the inter-temporal relationship
between the future asset cash flow at T and the asset price at time t.

We consider a pricing kernel {πt} that is modelled by a function of the form

πt = π(t, x). (2)

The function π(t, x) shall be deduced such that the pricing kernel is a positive
({Ft},P)-supermartingale.

Ideally, the constructed asset pricing framework allows for direct model
calibrations to market data and other relevant information.
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Pricing kernel models in finite time

We fix a finite time U > 0.

We introduce a process {Xt}0≤t≤U on (Ω,F ,P) that generates the market
filtration, that is Ft := σ ({Xs}0≤s≤t).

Let {Xt} have the Markov property with respect to {Ft}.

We consider the following pricing kernel model:

πt = π(t,Xt) = f0(t) + f1(t)

∫ U−t

0

E [F (t + u,Xt+u) |Xt]w(t, u)du, (3)

where f0(t) and f1(t) are deterministic positive non-increasing functions, F (t, x)
is a positive measurable function, and w(t, u) satisfies

w(t, u− s) ≤ w(t− s, u) (4)

for s ≤ t ∧ u, t + u < U .

It can be proven that the considered pricing kernel processes are indeed
({Ft},P)-supermartingales.
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Bond price models and associated interest rates

By an application of the general pricing formula, we can calculate the price PtT
of a discount bond with maturity T , where 0 ≤ t ≤ T :

PtT =
1

πt
E [πT |Xt] . (5)

We insert the pricing kernel model

πt = f0(t) + f1(t)

∫ U−t

0

E [F (t + u,Xt+u) |Xt]w(t, u)du, (6)

and obtain

PtT =
f0(T ) + f1(T )

∫ U−t
T−t E [F (t + u,Xt+u) |Xt]w(T, u− T + t)du

f0(t) + f1(t)
∫ U−t
0 E [F (t + u,Xt+u) |Xt] w(t, u)du

. (7)

For 0 ≤ t < U , the initial term structure is given by
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P0t =
f0(t) + f1(t)

∫ U
t E [F (u,Xu) |X0]w(t, u− t)du

f0(0) + f1(0)
∫ U
0 E [F (u,Xu) |X0] w(0, u)du

. (8)

We then solve for f0(t) to express it in terms of P0t, set f0(0) = 1 with no loss
of generality, and plug the result into equation (7).

We obtain the following compact form:

PtT =
P0T + y(T ) (YtT − Y0T )

P0t + y(t) (Ytt − Y0t)
, (9)

where we define

YtT = Y (t, T,Xt) :=

∫ U−t

T−t
E [F (t + u,Xt+u) |Xt]w(T, u− T + t)du, (10)

and

y(t) :=
f1(t)

1 + f1(0)Y00
. (11)

The pricing kernel now takes the form

πt = π0 [P0t + y(t) (Ytt − Y0t)] , (12)
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where
π0 = 1 + f1(0)Y00. (13)

We emphasize that the bond price and the pricing kernel are automatically
calibrated to the initial term structure P0t.

Assuming that the function of the bond price is differentiable in T , we can
calculate the interest rate as follows:

rt = −∂T ln (PtT )
∣∣
T=t

(14)

= −∂tP0t + (Ytt − Y0t) {∂T y(T )}T=t + y(t) {(∂TYtT − ∂TY0T )}T=t
P0t + y(t) (Ytt − Y0t)

.

The interest rate model is positive by construction, and is automatically
calibrated to the initial term structure.

The additional degree of freedom y(t) can be used to calibrate the bond price
model (and thus the interest rate) to option data, e.g. caplets and swaptions.

Simulations of the interest rate dynamics rt = r(t,Xt) are straightforward, and
they essentially involve the simulation of a Markov process.
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Explicit asset pricing models

We can identify classes of pricing models with which bond prices, interest rates,
risk premiums, and derivatives on interest rates can be calculated in (semi-)
closed form.

Let {Mt}0≤t<U be an {Ft}-adapted P-martingale that induces a
change-of-measure from P to an equivalent auxiliary probability measure M.

Let {Y M
tT }0≤t≤T<U be defined by

Y M
tT =

∫ U−t

T−t
EM [F (t + u,Xt+u) |Xt] w(T, u− T + t) du. (15)

Then, the process

πt = π0
[
P0t + y(t)

(
Y M
tt − Y M

0t

)]
Mt (16)

is a positive ({Ft},P)-supermartingale where

P0t =
f0(t) + f1(t)Y

M
0t

f0(0) + f1(0)Y M
00

, y(t) =
f1(t)

1 + f1(0)Y M
00

. (17)
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The discount bond price process is given by

PtT =
P0T + y(T )

(
Y M
tT − Y M

0T

)
P0t + y(t)

(
Y M
tt − Y M

0t

) . (18)

Next, we consider ({Ft},M)-martingales {At} and deterministic decreasing
functions b(t).

We find that for bond price and associated interest rate processes of the form

PtT =
P0T + b(T )At

P0t + b(t)At
, rt = − ∂tP0t + At ∂tb(t)

P0t + b(t)At
, (19)

the prices of caplets and swaptions can be computed in (semi-)closed form.

Numerical root-finding may be necessary to calculate the price of in-the-money
options that are driven by multivariate Markov processes.
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Quadratic and exponential quadratic conditional Gaussian models

In order to provide explicit pricing models, we need to specify

(i) the Markov process {Xt}0≤t≤U ,

(ii) the positive integrable function F (t, x), and

(iii) the weight function w(t, u),

which together generate the dynamics of the pricing kernel.

Let us, for example, consider the following process:

LtU = σ tXU + βtU , (20)

where σ is a constant parameter, XU is a random variable with a priori density
P[XU ∈ dx] = p(x)dx, and {βtU}0≤t≤U is an independent standard Brownian
bridge.

It can be shown that {LtU}0≤t≤U is a Markov process with respect to its natural
filtration, and hence we can use such a process to generate the market filtration.
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Quadratic class.

Let F (t, x) = x2, and set w(t, u) = U − t− u.

Then, we have:

At =
U

(U − t)2
L2
tU −

t

U − t
, b(t) =

(U − t)4 f1(t)
4U
[
1 + 1

12f1(0)U 3
]. (21)

Exponential quadratic class.

Let w(t, u) = (U − t− u)η−1/2 for η > 1/2, and let

F (t, x) = exp

(
x2

2(U − t− u)

)
. (22)

Then, we have:

At =

√
1− t

U
exp

(
L2
tU

2(U − t)

)
− 1, b(t) =

(U − t)η−1/2U 1/2 f1(t)

1 + f1(0)U η
. (23)

The processes {At}0≤t<U are M-martingales where M is the measure under
which {LtU} has the law of a Brownian bridge.
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The bond price and the interest rate processes are thus given in explicit form by
formulae (19). The quadratic models, for example, give

PtT =
P0T + b(T )At

P0t + b(t)At
=

P0T + (U−T )4 f1(T )
4U
[
1+

1
12f1(0)U

3
] ( U

(U−t)2 L
2
tU − t

U−t

)
P0t + (U−t)4 f1(t)

4U
[
1+

1
12f1(0)U

3
] ( U

(U−t)2 L
2
tU −

t
U−t

) . (24)

Simulations of such bond price processes produce the following plots:

0 1 2 3 4
t

0.2

0.4

0.6

0.8

1.0

PtT

0.0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

PtT

Plot 1: T=4, U=6. Plot 2: T=2, U=6.
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For T = 2 and U = 6, the simulations of the associated quadratic models for the
interest rate {rt} and the bond volatility {ΩtT} show the following dynamics:
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Interest rate simulation for T=2, U=6. Bond volatility simulation for T=2, U=6.
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Interest rate derivatives

The price of interest rate options can be calculated in (semi-)closed form. In the
case that the form of the discount bond price process is

PtT =
P0T + b(T )At

P0t + b(t)At
, (25)

the price at time 0 of a swaption contract with maturity t and swap rate K is

Sw0t =
1

π0
E

πt(1− PtTn −K
n∑
i=1

PtTi

)+
 , (26)

=

(
P0t − P0Tn −K

n∑
i=1

P0Ti

)∫
aS
p(a) da

+

[
b(t)− b(Tn)−K

n∑
i=1

b (Ti)

]∫
aS
a p(a) da,

where P [At ∈ da] = p(a)da and

aS :=

{
a : a >

K
∑n

i=1 P0Ti − P0t + P0Tn

b(t)− b (Tn)−K
∑n

i=1 b (Ti)

}
.

18-19 April 2013 Andrea Macrina, University College London



Heat Kernel Framework for Asset Pricing in Finite Time - 16 - WU Wien

In the special case of an exponential quadratic pricing kernel model that is
driven by a single Brownian random bridge, the price Sw0t of the swaption is

Sw0t =

(
P0t − P0Tn −K

n∑
i=1

P0Ti

)
N(−ν)

+

[
b(t)− b (Tn)−K

n∑
i=1

b (Ti)

] [
N(ν)−N

(
ν
√

1− t/U
)]
,

(27)

where N(x) is the cumulative normal distribution function, and here

ν :=

√√√√2U

t
ln

[(
1− t

U

)−1/2(
K
∑n

i=1 P0Ti + P0Tn − P0t

b(t)− b (Tn)−K
∑n

i=1 b (Ti)
+ 1

)]
. (28)
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Dynamical equation of the discount bond price process

We investigate the class of bond price processes of the form

PtT =
P0T + b(T )At

P0t + b(t)At
(29)

in the case where
dAt = νt (dWt + ϑt dt) . (30)

Here {νt} and {ϑt} are {Ft}-adapted processes, and {Wt} is an
({Ft},P)-Brownian motion.

By an application of Ito’s Lemma, we obtain the dynamical equation of the bond
price process:

dPtT
PtT

= (rt + λt ΩtT ) dt + ΩtT dWt. (31)

where {rt} is the interest rate, {λt}0≤t<U is the market price of risk, and
{ΩtT}0≤t≤T is the bond volatility.

We have:
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rt = − ∂tP0t + At∂tb(t)

P0t + b(t)At
, (32)

λt = ϑt − νt
b(t)

P0t + b(t)At
, (33)

ΩtT = νt

[
b(T )

P0T + b(T )At
− b(t)

P0t + b(t)At

]
. (34)

Let us suppose that the Markov process generating the market filtration is

LtU = σ tXU + βtU . (35)

Then, the Brownian motion is given by

dWt = dLtU −
1

U − t
[σ U E [XU |LtU ]− LtU ] dt, (36)

and

ϑt =
σU

U − t
EP [XU |LtU ] . (37)

Furthermore, in the case of the quadratic models, we have

νt =
2U

(U − t)2
LtU . (38)
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In the case of exponential quadratic models, we have

νt =

(
U−t
U

)1/2
U − t

LtU exp

[
L2
tU

2(U − t)

]
. (39)

Dynamical equation under the risk-neutral measure Q
We are now in the position to define (in a natural way) an equivalent
risk-neutral measure Q by the following Radon-Nikodym derivative:

dQ
dP

∣∣∣∣
Ft

= exp

[
−
∫ t

0

λs dWs − 1
2

∫ t

0

λ2s ds

]
. (40)

By the Girsanov Theorem, we may define a Q-Brownian motion {WQ
t }0≤t<U by

dWQ
t = dWt + λt dt. (41)

The dynamical equation of the bond price has thus the following Q-form:

dPtT = rt PtT dt + ΩtT PtT dWQ
t . (42)

Furthermore, the discount bond price at time t is given by the familiar
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risk-neutral valuation formula:

PtT = EQ
[

exp

(
−
∫ T

t

rs ds

) ∣∣∣∣LtU] , (43)

where

rt = − ∂tP0t + At ∂tb(t)

P0t + b(t)At
. (44)

The dynamical equation for the short rate of interest {rt} is given by

drt
rt

= µt dt + σt dWQ
t , (45)

where

µt =
∂tP0t + At ∂tb(t)

P0t + b(t)At
− ∂ttP0t + At ∂ttb(t)

∂tP0t + At ∂tb(t)
, (46)

and

σt = νt

(
b(t)

P0t + b(t)At
− ∂tb(t)

∂tP0t + At ∂tb(t)

)
. (47)
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Multi-factor models

So far, the considered pricing kernel models have mainly been driven by a single
stochastic factor.

The presented asset pricing framework is flexible, tractable, and intuitive so that
the extension to the multi-factor case is rather natural.

As an example, let the market filtration {Ft} be jointly generated by two

Markov processes {X(1)
t } and {X(2)

t }.

We consider the following bond price model:

PtT =
f0(T ) + f1(T )Y

(1)
tT + f2(T )Y

(2)
tT

f0(t) + f1(t)Y
(1)
tt + f2(t)Y

(2)
tt

, (48)

where, for i = 1, 2,

Y
(i)
tT =

∫ U−t

T−t
E
[
Fi(t + u,X

(i)
t+u) |X

(1)
t , X

(2)
t

]
wi(T, u− T + t) du, (49)
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and where f0(t), f1(t), f2(t) are deterministic positive decreasing functions.

The associated pricing kernel process is

πt = f0(t) + f1(t)Y
(1)
tt + f2(t)Y

(2)
tt . (50)

Let us suppose that the driving factors are two independent “Brownian bridge

information processes” {L(i)
tU}, i = 1, 2.

We may further assume that Y
(1)
tT generates a quadratic model, and that Y

(2)
tT

gives rise to an exponential quadratic model.

The following simulations of the two-factor bond price models show different
behaviours when compared to the one-factor models.

In the simulations below, the functions f0(t), f1(t), f2(t) decrease exponentially.
The horizon is at U = 6, and the bond maturity is T = 4.

The various price dynamics are due to different values of the exponential decay
parameter, and due to various values of σi in

L
(i)
tU = σi tX

(i)
U + β

(i)
tU . (51)
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Incomplete market models driven by LRBs

So far, we have generated the market filtration by the Markov process

LtU = σ tXU + βtU . (52)

This process belongs to the class of time-inhomogeneous Markov processes we
call “Lévy random bridge” (LRB).

Definition (Multivariate LRB). {LtU}0≤t≤U is a multivariate LRB on Rm if:

1. The random variable LUU on Rm has marginal law ν.

2. There exist a multivariate Lévy process {Lt}0≤t≤U on Rm such that Lt has
multivariate density function ρt(x) on Rm for all t ∈ (0, U ].

3. The marginal law ν concentrates mass where ρU(z) is positive and finite, that
is 0 < ρU(z) <∞ for ν-almost-every z ∈ Rm.

4. For every n ∈ N+, every 0 < t1 < . . . < tn < U , every
(x1, . . . , xn) ∈ Rm × Rn, and ν-almost-every z ∈ Rm, we have

P [Lt1U ≤ x1, . . . , LtnU ≤ xn |LUU = z] = P [Lt1 ≤ x1, . . . Ltn ≤ xn |LU = z] .
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Proposition (“Lévy probability measure” L)

Let {LtU}0≤t≤U denote a multivariate LRB with marginal law ν. Let the
multivariate Lévy process {Lt}0≤t≤U , which generates the LRB, have density
ρt(x) for all t ∈ (0, U ]. Under the measure L defined by

`−1t :=
dP
dL

∣∣∣∣
Ft

=

∫
R

ρU−t(z − LtU)

ρU(z)
ν(dz), (53)

the LRB {LtU} has the law of the generating Lévy process for t ∈ [0, U).

Proposition (L-independence)

Let {LtU}0≤t≤U be a multivariate LRB on Rm generated by a Lévy process on
Rm of which multivariate density function ρt(z) factorises, that is

ρt(z) =

m∏
k=1

ρkt (zk). (54)

Under L, the components, {L(i)
tU} and {L(j)

tU } i 6= j, of the LRB on Rm are
independent and each LRB component has the law of the respective component
of the generating Lévy process {Lt}, for t ∈ [0, U).
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Spiralling debt and global bond markets

We shift the emphasis on the value of a sovereign bond reflecting the level of
economic health of the issuing country.

We consider a central government with

(i) a source of income (tax revenues, state-owned companies) and
(ii) ordinary expenditures (health care, public education, armed forces).

We model the combination of income and ordinary expenditures by a Brownian
random bridge:

L
(1)
tU = σ tX

(1)
U + βtU .

In addition, we assume that there is an accumulation of extraordinary losses
(natural catastrophes, war, financial crises with bank bailouts) resulting in
spiralling debt.

We model the spiralling debt by a gamma random bridge:

L
(2)
tU = X

(2)
U γtU ,

where {γtU} is an independent standard gamma bridge over [0, U ].

The random variables X
(1)
U and X

(2)
U may be dependent, though.
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Next, we assume that the pricing kernel model,

πt = f0(t) + f1(t)

∫ U−t

0

EL [F (t + u, Lt+u,U) |LtU ]w(t, u)du, (55)

for the considered economy is constructed by selecting functions of the form

F (t + u1, t + u2, y1 + x1, y2 + x2) = exp (−a(y1 + x1) + c(y2 + x2)) ,

w(t, u1, u2) = exp

(
−a

2

2
(t + u1)

)
(1− c)m(t+u2).

Here, LtU =
(
L
(1)
tU , L

(2)
tU

)
and u = (u1, u2).

It follows that the bond price process is given by:

PtT =
P0T + b(T )AL

t

P0t + b(t)AL
t

, (56)

where, for 0 ≤ t ≤ T < U , a ≥ 0, 0 ≤ c ≤ 1, m > 0, we have

b(t) =
(U − t)2f1(t)
1 + f1(0)U 2

, AL
t = (1− c)mt exp

(
−aL(1)

tU −
1
2a

2t + c L
(2)
tU

)
− 1.

18-19 April 2013 Andrea Macrina, University College London



Heat Kernel Framework for Asset Pricing in Finite Time - 28 - WU Wien

Dependence in international markets

The effects arising from spiralling debt affect international markets, and the
deterioration of an economy’s health exposes, for instance, foreign creditors
holding debt of the distressed economy.

Bond markets are global “debt networks” linking several national economies to
one another. The result of such networks is usually contagion.

An ailing economy may severely damage creditors which, through financial
exposure, may suffer losses due to contagion effects.

In the next situation, we consider a network of four Eurozone countries, which
are linked according to the following exposure matrix:

GER FRA ESP ITA
GER 1 0 0 0
FRA 0 1 0 0
ESP 0.57 0.47 1 0
ITA 0.49 0.25 0 1

By use of the incomplete market approach driven by LRBs, we are in the
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position to model contagion effects with ease.

We introduce a linear combination {L̃(j)
tU } of cumulative random bridge

processes to model the exposure of country j to the other network economies i

with cumulating debt {L(i)
tU}:

L̃
(j)
tU =

n∑
i

w
(j)
i L

(i)
tU .

The processes {L(i)
tU}i=1,...,n may be dependent via their joint terminal law.

A similar calculation as for the single-economy example leads to economy’s j
bond price process with form:

PtT =
P0T + b(T )AL

t

P0t + b(t)AL
t

, (57)

where

b(t) =
(U − t)n+1f1(t)

1 + f1(0)Un+1
,

AL
t =

n∏
i=1

(
1− w(j)

i

)mit

exp
(
−aL(j)

tU −
1
2a

2t + L̃
(j)
tU

)
− 1, (58)
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and 0 ≤ w
(j)
i ≤ 1, mi > 0.

It is straightforward to simulate the bond price process, and so it is for the yield
and the spread process:

Figure 1: Simulation of the yield process of the two-year-maturity bonds issued
by Germany, France, Italy, and Spain.
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Figure 2: Simulation of the price spread process for the two-year-maturity bonds
issued by France, Italy, and Spain compared with the two-year bond issued by
Germany.
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General asset pricing

The presented asset pricing framework can be applied to price any financial asset
in a way that is consistent with the valuation of fixed-income securities.

We may consider a non-dividend-paying stock (e.g., Google) with a random
value STT at a future fixed date T , where 0 ≤ t ≤ T < U .

“No-arbitrage” requires that the product of an asset price process {StT} with
the pricing kernel {πt} be a P-martingale. That is:

πt StT = mtT , (59)

where {mtT} are families of P-martingales.

For example,
mtT = g0(T ) + g1(T )ZtT (60)

where g0(T ) and g1(T ) are deterministic, and {ZtT} is defined by
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ZtT =

∫ U−t

T−t
EP [G (t + u,Xt+u) |Xt]ψ(t + u) du. (61)

The function ψ(t) is deterministic, and G(t, x) is taken to be measurable.

Assuming that the pricing kernel is of the form

πt = f0(t) + f1(t)Ytt, (62)

it follows that the asset price process {StT} is given by

StT =
S0T + z(T ) (ZtT − Z0T )

P0t + y(t) (Ytt − Y0t)
, (63)

where y(t) and z(t) are deterministic functions.

18-19 April 2013 Andrea Macrina, University College London



Heat Kernel Framework for Asset Pricing in Finite Time - 34 - WU Wien

Proposition (Asset price model)

Let {Mt}0≤t<U be the {Ft}-adapted density martingale inducing a

change-of-measure from P to M. Let {A(i)
t }

i=1,2
0≤t<U be ({Ft},M)-martingales,

and consider a pricing kernel model of the form

πt = π0

[
P0t + b2(t)A

(2)
t

]
Mt. (64)

Furthermore, let

STT =
S0T + b1(T )A

(1)
T

P0T + b2(T )A
(2)
T

,

where bi(T ), i = 1, 2, are deterministic functions, and b2(t) is non-negative and
non-increasing. Then the associated asset price process {StT} is given by

StT =
S0T + b1(T )A

(1)
t

P0t + b2(t)A
(2)
t

. (65)

One example is...
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StT =

S0T + (U−T )η−1/2U1/2g1(T )
1+g1(0)Uη

[√
1− t/U exp

(
L
(1) 2
tU

2(U−t)

)
− 1

]
P0t + (U−t)4f1(t)

4U[1+(1/12) f1(0)U3]

[
U

(U−t)2 L
(2) 2
tU −

t
U−t

] . (66)

In the case that the Markov process {LtU} is multidimensional, that is,

LtU = (L
(1)
tU , L

(2)
tU , . . . , L

(n)
tU ), then the asset with price process (66) is traded in

an incomplete market.

Proposition (Dynamical equation, P to Q)

Let {Ft} be jointly generated by {L(i)
tU}, i = 1, 2. Let the price process of an

asset be of the form (65) where {A(i)
t }0≤t<U satisfies

dA
(i)
t = ν

(i)
t

(
dW

P (i)
t + ϑ

(i)
t dt

)
for i = 1, 2. The process {ν(i)t } is {Ft}-adapted, and

ϑ
(i)
t =

σiU

U − t
EP
[
X

(i)
U

∣∣Ft] ,
dW

P (i)
t = dL

(i)
tU −

1

U − t

(
σiU EP

[
X

(i)
U

∣∣Ft]− L(i)
tU

)
dt
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where σi is constant. The dynamical equation of such a price process is
dStT
StT

= (rt + λtΣtT ) dt + ΣtT dW P
t , (67)

where

rt = − ∂tP0t + A
(2)
t ∂tb2(t)

P0t + b2(t)A
(2)
t

, λt =


ϑ
(1)
t − ρij ν

(2)
t

b2(t)

P0t+b2(t)A
(2)
t

ϑ
(2)
t − ν

(2)
t

b2(t)

P0t+b2(t)A
(2)
t

 ,

ΣtT =


b1(T )ν

(1)
t

S0T+b1(T )A
(1)
t

− b2(t)ν
(2)
t

P0t+b2(t)A
(2)
t

 .

The process W P
t = (W

P (1)
t ,W

P (2)
t ) is a two-dimensional ({Ft},P)-Brownian

motion where dW
P (i)
t dW

P (j)
t = ρij dt for i 6= j, ρij ∈ [−1, 1), and

dW
P (i)
t dW

P (j)
t = dt for i = j.

We can now write the dynamical equation of the asset price process under the
risk-neutral measure Q:
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dStT
StT

= rt dt + ΣtT dWQ
t , (68)

where dWQ
t = dW P

t + λtdt is the risk-neutral Brownian motion defined in terms
of the P-Brownian motion {W P

t } and the market price of risk process {λt}.

The solution to the stochastic differential equation (68) has the familiar
Q-log-normal form

StT = S0T exp

(∫ t

0

(
rs − 1

2 Σ2
sT

)
ds +

∫ t

0

ΣsT dWQ
s

)
. (69)

Thus we can construct multi-factor asset price processes (e.g. equity) with
stochastic discounting and stochastic volatility, which are consistent with the
dynamics under the real measure P and the risk-neutral measure Q.

18-19 April 2013 Andrea Macrina, University College London



Heat Kernel Framework for Asset Pricing in Finite Time - 38 - WU Wien

Inflation-linked assets

The pricing kernel approach to asset pricing can naturally be applied to the
pricing of inflation-linked securities.

The idea here is to introduce a pricing kernel {πt} for the nominal economy and
a pricing kernel {πRt } for the real economy.

The price index process {Ct} (CPI, RPI) is then modelled as an exchange rate
between the two economies, that is

Ct =
πRt
πt
. (70)

The price at time t ≤ T of an inflation-linked discount bond P IL
tT that pays CT

at bond maturity T is

P IL
tT =

1

πt
E [πT CT |Ft] (71)

=
1

πt
E
[
πRT |Ft

]
. (72)

18-19 April 2013 Andrea Macrina, University College London



Heat Kernel Framework for Asset Pricing in Finite Time - 39 - WU Wien

Next, we consider:

πt = f0(t) + f1(t)

∫ U−t

0

E [F (t + u,Xt+u) |Xt]w(t, u)du, (73)

πRt = f ∗0 (t) + f ∗1 (t)

∫ U−t

0

E [F ∗(t + u,Xt+u) |Xt]w
∗(t, u)du, (74)

where the real pricing kernel process {πRt } no longer must be a supermartingale,
and the Markov process {Xt}0≤t≤U is multi-dimensional.

By inserting the expressions for the pricing kernels in the pricing formula for the
inflation-linked discount bond, we obtain

P IL
tT =

P IL
0T + y∗(T ) (Y ∗tT − Y ∗0T )

P0t + y(t) (Ytt − Y0t)
, (75)

where {YtT} and y(t) are defined by (10) and (11), and

Y ∗tT =

∫ U−t

T−t
E [F ∗(t + u,Xt+u) |Xt]w

∗(T, u− T + t)du, (76)

y∗(t) =
f ∗1 (t)

1 + f1(0)Y00
. (77)
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For the pricing of inflation-linked securities, one may wish to consider models
with a higher degree of tractability which yield inflation-adjusted discount bond
price processes of the form

P IL
tT =

P IL
0T + b∗(T )A∗t
P0t + b(t)At

, (78)

where {At} and {A∗t} are martingales with respect to an auxiliary martingale
measure M.

One can now proceed to price inflation-linked derivatives such as inflation-linked
swaps and swaptions.
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Conclusions

1. The presented pricing models, derived under P, are flexible and exhibit a
great deal of flexibility. Model calibration is in part automatic.

2. Bonds and equity are priced coherently. Other asset classes such as FX,
inflation-linked securities, credit-risky and insurance products are next in the
research agenda.

3. The proposed framework gives rise to novel stochastic positive interest rate
and stochastic volatility models.

4. The structure of the constructed price processes offers a natural base for
dependence modelling and thus for the pricing of asset portfolios.

5. Future work may include the study of the volatility surface models related to
this pricing framework, and the inclusion of regulatory requirements via the
degrees of freedom inherent in the pricing models.
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