Linear-Rational Term Structure Models

Martin Larsson
Swiss Finance Institute
Ecole Polytechnique Fédérale de Lausanne
Joint with Damir Filipović and Anders Trolle
Current Topics in Mathematical Finance Vienna University of Economics and Business

April 18, 2013

Goals

- Three desirable feature of a term structure model:
- Tractable pricing formulas (for zero-coupon bonds this is a necessity, but clearly desirable also for more complicated contracts such as swaptions)
- Nonnegative short rate
- Unspanned Stochastic Volatility
- Affine term structure models have great difficulty combining these features
- Goal: Develop a framework where all these features are naturally present
- Illustrate on swaption pricing

Outline

- Linear-Rational Term Structure Models
- Unspanned Stochastic Volatility
- Swaption Pricing
- Empirics
- Conclusion

Linear-Rational

Term Structure Models

State price density models

- Filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right), \mathbb{P}$ is historical probability measure

State price density models

- Filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right), \mathbb{P}$ is historical probability measure
- State price density: positive supermartingale $\left(\zeta_{t}\right)_{t \geq 0}$

State price density models

- Filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right), \mathbb{P}$ is historical probability measure
- State price density: positive supermartingale $\left(\zeta_{t}\right)_{t \geq 0}$
- Model price at t of any claim C maturing at T :

$$
\Pi_{C}(t, T):=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} C \mid \mathcal{F}_{t}\right]
$$

This gives an arbitrage-free price system.

State price density models

- Filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right), \mathbb{P}$ is historical probability measure
- State price density: positive supermartingale $\left(\zeta_{t}\right)_{t \geq 0}$
- Model price at t of any claim C maturing at T :

$$
\Pi_{C}(t, T):=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} C \mid \mathcal{F}_{t}\right]
$$

This gives an arbitrage-free price system.

- Relation to short rate r_{t} and pricing measure \mathbb{Q} :

$$
\zeta_{t} \quad \propto \quad \mathrm{e}^{-\int_{0}^{t} r_{s} d s} \mathbb{E}\left[\left.\frac{\mathrm{~d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}} \right\rvert\, \mathcal{F}_{t}\right]
$$

State price density models

This approach was used by

- Constantinides (1992)
- Rogers (1997)
- Flesaker \& Hughston (1996)
- Gabaix (2007)
- ...

State price density models

This approach was used by

- Constantinides (1992)
- Rogers (1997)
- Flesaker \& Hughston (1996)
- Gabaix (2007)
- ...

How to tractably model ζ_{t} ?

Linear-Rational term structure models

Ingredients:

- Factor process X with state space $E \subset \mathbb{R}^{d}$
- Positive function p_{ζ} on E
- Real parameter α

Linear-Rational term structure models

Ingredients:

- Factor process X with state space $E \subset \mathbb{R}^{d}$
- Positive function p_{ζ} on E
- Real parameter α

Non-normalized state price density:

$$
\zeta_{t}=\mathrm{e}^{-\alpha t} p_{\zeta}\left(X_{t}\right)
$$

Linear-Rational term structure models

Ingredients:

- Factor process X with state space $E \subset \mathbb{R}^{d}$
- Positive function p_{ζ} on E
- Real parameter α

Non-normalized state price density:

$$
\zeta_{t}=\mathrm{e}^{-\alpha t} p_{\zeta}\left(X_{t}\right)
$$

Key idea (Linear-Rational Term Structure model):

- $p_{\zeta}(x)=\phi+\psi^{\top} x$, positive on E
- X with affine drift:

$$
\mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t}
$$

where $\kappa \in \mathbb{R}^{d \times d}, \theta \in \mathbb{R}^{d}, M$ is a martingale.

Linear-Rational term structure models

Lemma. The conditional expectation of X_{T} is

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{t}\right]=\theta+\mathrm{e}^{-\kappa(T-t)}\left(X_{t}-\theta\right)
$$

Linear-Rational term structure models

Lemma. The conditional expectation of X_{T} is

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{t}\right]=\theta+\mathrm{e}^{-\kappa(T-t)}\left(X_{t}-\theta\right)
$$

Consequences:

- Linear-rational (and explicit) bond price system:

$$
P(t, t+\tau)=\frac{\mathrm{e}^{-\alpha \tau}}{p_{\zeta}\left(X_{t}\right)} \mathbb{E}\left[p_{\zeta}\left(X_{t+\tau}\right) \mid \mathcal{F}_{t}\right]=F\left(\tau, X_{t}\right)
$$

where $F(\tau, x)=\frac{\left(\phi+\psi^{\top} \theta\right) \mathrm{e}^{-\alpha \tau}+\psi^{\top} \mathrm{e}^{-(\alpha+\kappa) \tau}(x-\theta)}{\phi+\psi^{\top} x}$

Linear-Rational term structure models

Lemma. The conditional expectation of X_{T} is

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{t}\right]=\theta+\mathrm{e}^{-\kappa(T-t)}\left(X_{t}-\theta\right)
$$

Consequences:

- Linear-rational (and explicit) bond price system:

$$
P(t, t+\tau)=\frac{\mathrm{e}^{-\alpha \tau}}{p_{\zeta}\left(X_{t}\right)} \mathbb{E}\left[p_{\zeta}\left(X_{t+\tau}\right) \mid \mathcal{F}_{t}\right]=F\left(\tau, X_{t}\right)
$$

where $F(\tau, x)=\frac{\left(\phi+\psi^{\top} \theta\right) \mathrm{e}^{-\alpha \tau}+\psi^{\top} \mathrm{e}^{-(\alpha+\kappa) \tau}(x-\theta)}{\phi+\psi^{\top} x}$

- Linear-rational short rate: $r_{t}=\alpha-\frac{\psi^{\top} \kappa\left(\theta-X_{t}\right)}{\phi+\psi^{\top} X_{t}}$

Intrinsic choice of α

Define

$$
\alpha^{*}=\sup _{x \in E} \frac{\psi^{\top} \kappa(\theta-x)}{\phi+\psi^{\top} x} \quad \alpha_{*}=\inf _{x \in E} \frac{\psi^{\top} \kappa(\theta-x)}{\phi+\psi^{\top} x} .
$$

- Should arrange so that $\alpha^{*}<\infty$ to get r_{t} bounded below
- With $\alpha=\alpha^{*}$, we get

$$
r_{t} \in\left[0, \alpha^{*}-\alpha_{*}\right]
$$

- For the model to be useful, this range must be wide enough

Unspanned Stochastic Volatility

Unspanned stochastic volatility in Linear-rational models

Empirical fact: Volatility risk cannot be hedged using bonds

- Collin-Dufresne \& Goldstein (02): Interest rate swaps can hedge only $10 \%-50 \%$ of variation in ATM straddles (a volatility-sensitive instrument)
- Heidari \& Wu (03): Level/curve/slope explain 99.5\% of yield curve variation, but 59.5% of variation in swaption implied vol

This phenomenon is called Unspanned Stochastic Volatility (USV).

Unspanned stochastic volatility in Linear-rational models

Empirical fact: Volatility risk cannot be hedged using bonds

- Collin-Dufresne \& Goldstein (02): Interest rate swaps can hedge only $10 \%-50 \%$ of variation in ATM straddles (a volatility-sensitive instrument)
- Heidari \& Wu (03): Level/curve/slope explain 99.5\% of yield curve variation, but 59.5\% of variation in swaption implied vol

This phenomenon is called Unspanned Stochastic Volatility (USV). In our Linear-Rational setting this is operationalized as:

Definition. The state process has unspanned factors if the current state X_{t} cannot be inferred from $\{P(t, t+\tau), \tau \geq 0\}$. Equivalently, the map $E \ni x \mapsto F(\cdot, x)$ is not injective.

Unspanned stochastic volatility in Linear-rational models

Theorem. Assume that $\operatorname{int}(E) \neq \emptyset$ and that all eigenvalues of κ are nonzero. The following are equivalent:
(i) The state process has unspanned factors
(ii) There exists $u \in \mathbb{R}^{d} \backslash\{0\}$ such that $F(\cdot, x) \equiv F(\cdot, x+s u)$ for all $x \in \mathbb{R}^{d}$ and all $s \in \mathbb{R}$
(iii) There exists $u \in \mathbb{R}^{d} \backslash\{0\}$ such that $\psi^{\top} \mathrm{e}^{-\kappa \tau} u=0$, all $\tau \geq 0$

Any u that works in (ii) also works in (iii), and vice versa.

Unspanned stochastic volatility in Linear-rational models

Theorem. Assume that $\operatorname{int}(E) \neq \emptyset$ and that all eigenvalues of κ are nonzero. The following are equivalent:
(i) The state process has unspanned factors
(ii) There exists $u \in \mathbb{R}^{d} \backslash\{0\}$ such that $F(\cdot, x) \equiv F(\cdot, x+s u)$ for all $x \in \mathbb{R}^{d}$ and all $s \in \mathbb{R}$
(iii) There exists $u \in \mathbb{R}^{d} \backslash\{0\}$ such that $\psi^{\top} \mathrm{e}^{-\kappa \tau} u=0$, all $\tau \geq 0$

Any u that works in (ii) also works in (iii), and vice versa.

Define the subspace U of unspanned directions:

$$
U=\left\{u \in \mathbb{R}^{d}: \psi^{\top} \mathrm{e}^{-\kappa \tau} u=0 \text { for all } \tau \geq 0\right\}
$$

The "number of unspanned factors" is the dimension of U.

Unspanned stochastic volatility in Linear-rational models

When do we have unspanned factors?

Theorem. Let $\lambda_{1}, \ldots, \lambda_{n}(n \leq d)$ denote the distinct eigenvalues of κ, and let m_{1}, \ldots, m_{n} be their geometric multiplicities. Then

$$
\operatorname{dim} U \geq\left(m_{1}-1\right)+\cdots+\left(m_{n}-1\right)
$$

If κ is diagonalizable with real eigenvalues, and ψ is not orthogonal to any eigenspace $\operatorname{Ker}\left(\lambda_{i}-\kappa\right), i=1, \ldots, n$, the above inequality is in fact an equality.

Constructing models with USV

By previous theorem, need geometric multiplicity of eigenvalues of κ. We can do this by adding factors to an initial model.

Constructing models with USV

By previous theorem, need geometric multiplicity of eigenvalues of κ. We can do this by adding factors to an initial model.

- Consider a d-factor Linear-Rational model

$$
\mathrm{d} \widehat{X}_{t}=\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\mathrm{d} \widehat{M}_{t}, \quad \widehat{p}_{\zeta}(\widehat{x})=\widehat{\phi}+\widehat{\psi}^{\top} \widehat{x}
$$

with $\widehat{\kappa}$ unrestricted. Suppose this can capture the dynamics of the yield curve (in practice, $d=3$ is enough.)

Constructing models with USV

By previous theorem, need geometric multiplicity of eigenvalues of κ. We can do this by adding factors to an initial model.

- Consider a d-factor Linear-Rational model

$$
\mathrm{d} \widehat{X}_{t}=\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\mathrm{d} \widehat{M}_{t}, \quad \widehat{p}_{\zeta}(\widehat{x})=\widehat{\phi}+\widehat{\psi}^{\top} \widehat{x}
$$

with $\widehat{\kappa}$ unrestricted. Suppose this can capture the dynamics of the yield curve (in practice, $d=3$ is enough.)

- "Generically" (on a full-measure set of parameters), no unspanned factors are present.

Constructing models with USV

By previous theorem, need geometric multiplicity of eigenvalues of κ. We can do this by adding factors to an initial model.

- Consider a d-factor Linear-Rational model

$$
\mathrm{d} \widehat{X}_{t}=\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\mathrm{d} \widehat{M}_{t}, \quad \widehat{p}_{\zeta}(\widehat{x})=\widehat{\phi}+\widehat{\psi}^{\top} \widehat{x}
$$

with $\widehat{\kappa}$ unrestricted. Suppose this can capture the dynamics of the yield curve (in practice, $d=3$ is enough.)

- "Generically" (on a full-measure set of parameters), no unspanned factors are present.
- Suppose want to include swaptions; need unspanned factors.
- Idea: Construct a $(d+k)$-factor model that is observationally equivalent to a d-factor model when calibrated to bonds only.

Constructing models with USV

Consider now a $(d+k)$-factor model on $E \subset \mathbb{R}^{d+k}$ of the form:

$$
\mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t}, \quad p_{\zeta}(x)=\phi+\psi^{\top} x .
$$

Constructing models with USV

Consider now a $(d+k)$-factor model on $E \subset \mathbb{R}^{d+k}$ of the form:

$$
\mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t}, \quad p_{\zeta}(x)=\phi+\psi^{\top} x
$$

Theorem. Let $A: \mathbb{R}^{d+k} \rightarrow \mathbb{R}^{d}$ be linear and define $\widehat{X}=A X$.
Then

$$
\mathrm{d} \widehat{X}_{t}=\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\mathrm{d} \widehat{M}_{t}, \quad \widehat{M}=A M
$$

if and only if $A \kappa=\widehat{\kappa} A$ and $\widehat{\kappa} A \theta=\widehat{\kappa} \widehat{\theta}$.

Constructing models with USV

Consider now a $(d+k)$-factor model on $E \subset \mathbb{R}^{d+k}$ of the form:

$$
\mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t}, \quad p_{\zeta}(x)=\phi+\psi^{\top} x
$$

Theorem. Let $A: \mathbb{R}^{d+k} \rightarrow \mathbb{R}^{d}$ be linear and define $\widehat{X}=A X$.
Then

$$
\mathrm{d} \widehat{X}_{t}=\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\mathrm{d} \widehat{M}_{t}, \quad \widehat{M}=A M
$$

if and only if $A \kappa=\widehat{\kappa} A$ and $\widehat{\kappa} A \theta=\widehat{\kappa} \widehat{\theta}$.
Furthermore, let $P(t, T)$ and $\widehat{P}(t, T)$ be the respective bond prices. Then

$$
P(t, T)=\widehat{P}(t, T) \quad \text { for all } \quad 0 \leq t \leq T
$$

if and only if $\widehat{\phi}=\phi$ and $A^{\top} \widehat{\psi}=\psi$.

Constructing models with USV

The extended model (X, p_{ζ}) has unspanned factors:

Constructing models with USV

The extended model (X, p_{ζ}) has unspanned factors:

Hence for $u \in \operatorname{Ker}(A)$ we have

$$
F(\tau, x+s u)=F(\tau, x) \quad \text { for all } \quad \tau \geq 0, s \in \mathbb{R}
$$

Therefore, $\operatorname{dim} U \geq \operatorname{dim} \operatorname{Ker}(A) \geq k$.

Constructing models with USV

The extended model $\left(X, p_{\zeta}\right)$ has unspanned factors:

Task: Find some A and a class of κ and $\widehat{\kappa}$ such that $A \kappa=\widehat{\kappa} A$. Any choice of θ, M then gives \widehat{X} by setting

$$
\widehat{\theta}=A \theta, \quad \widehat{M}=A M .
$$

Given $\widehat{\phi}, \widehat{\psi}$ we get ϕ, ψ by setting $\phi=\widehat{\phi}, \psi=A^{\top} \widehat{\psi}$.

Constructing models with USV

Example ($d=3, k=1$, first factor unspanned): Set

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{l}
\widehat{X}_{1} \\
\widehat{X}_{2} \\
\widehat{X}_{3}
\end{array}\right)=A X=\left(\begin{array}{c}
x_{1}+X_{4} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

Constructing models with USV

Example ($d=3, k=1$, first factor unspanned): Set

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{l}
\widehat{X}_{1} \\
\widehat{X}_{2} \\
\widehat{X}_{3}
\end{array}\right)=A X=\left(\begin{array}{c}
x_{1}+X_{4} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

Define

$$
\kappa=\left(\begin{array}{llll}
\kappa_{11} & \kappa_{12} & \kappa_{13} & \\
\kappa_{21} & \kappa_{22} & \kappa_{21} & \kappa_{21} \\
\kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} \\
& & & \kappa_{11}
\end{array}\right), \quad \widehat{\kappa}=\left(\begin{array}{lll}
\kappa_{11} & \kappa_{12} & \kappa_{13} \\
\kappa_{21} & \kappa_{22} & \kappa_{21} \\
\kappa_{31} & \kappa_{32} & \kappa_{33}
\end{array}\right)
$$

Constructing models with USV

Example ($d=3, k=1$, first factor unspanned): Set

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{c}
\widehat{X}_{1} \\
\widehat{X}_{2} \\
\widehat{X}_{3}
\end{array}\right)=A X=\left(\begin{array}{c}
x_{1}+X_{4} \\
x_{2} \\
X_{3}
\end{array}\right)
$$

Define

$$
\kappa=\left(\begin{array}{llll}
\kappa_{11} & \kappa_{12} & \kappa_{13} & \\
\kappa_{21} & \kappa_{22} & \kappa_{21} & \kappa_{21} \\
\kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} \\
& & & \kappa_{11}
\end{array}\right), \quad \widehat{\kappa}=\left(\begin{array}{lll}
\kappa_{11} & \kappa_{12} & \kappa_{13} \\
\kappa_{21} & \kappa_{22} & \kappa_{21} \\
\kappa_{31} & \kappa_{32} & \kappa_{33}
\end{array}\right)
$$

Then $A \kappa=\widehat{\kappa} A$, and $\operatorname{dim} U=1$ for generic parameter values.
Note: κ only depends on $3 \times 3=9$ parameters.

Constructing models with USV

Example ($d=3, k=2$, first and second factors unspanned):

$$
A=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{c}
\widehat{X}_{1} \\
\widehat{X}_{2} \\
\widehat{X}_{3}
\end{array}\right)=A X=\left(\begin{array}{c}
X_{1}+X_{4} \\
X_{2}+X_{5} \\
X_{3}
\end{array}\right)
$$

Constructing models with USV

Example ($d=3, k=2$, first and second factors unspanned):

$$
A=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{c}
\widehat{X}_{1} \\
\widehat{X}_{2} \\
\widehat{X}_{3}
\end{array}\right)=A X=\left(\begin{array}{c}
X_{1}+X_{4} \\
X_{2}+X_{5} \\
X_{3}
\end{array}\right)
$$

Define
$\kappa=\left(\begin{array}{lllll}\kappa_{11} & \kappa_{12} & \kappa_{13} & & \\ \kappa_{21} & \kappa_{22} & \kappa_{23} & & \\ \kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} & \kappa_{32} \\ & & & \kappa_{11} & \kappa_{12} \\ & & & \kappa_{21} & \kappa_{22}\end{array}\right), \quad \widehat{\kappa}=\left(\begin{array}{lll}\kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{21} & \kappa_{22} & \kappa_{21} \\ \kappa_{31} & \kappa_{32} & \kappa_{33}\end{array}\right)$

Then $A \kappa=\widehat{\kappa} A$, and $\operatorname{dim} U=2$ for generic parameter values.

Canonical representation

Theorem. Assume $E=\mathbb{R}_{+}^{d}$, consider any linear-rational model with interest rates bounded below. Then, w.l.o.g. one can take

$$
p_{\zeta}(x)=1+\mathbf{1}_{m}^{\top} x,
$$

where $\mathbf{1}_{m}=(\underbrace{1, \ldots, 1}_{m \text { times }}, 0, \ldots, 0) \in \mathbb{R}^{d}$.
The intrinsic choice $\alpha=\alpha^{*}$ yields $r_{t} \in\left[0, \alpha^{*}-\alpha_{*}\right]$, where

$$
\begin{aligned}
& \alpha^{*}=\max \left\{\mathbf{1}_{m}^{\top} \kappa \theta,-\mathbf{1}_{m}^{\top} \kappa_{1}, \ldots,-\mathbf{1}_{m}^{\top} \kappa_{d}\right\} \\
& \alpha_{*}=\min \left\{\mathbf{1}_{m}^{\top} \kappa \theta,-\mathbf{1}_{m}^{\top} \kappa_{1}, \ldots,-\mathbf{1}_{m}^{\top} \kappa_{d}\right\}
\end{aligned}
$$

Swaption pricing

Interest rate swaps

- Exchange a stream of fixed-rate for floating-rate payments
- Consider a tenor structure,

$$
T_{0}<T_{1}<\cdots<T_{n}, \quad \Delta=T_{i}-T_{i-1} \text { fixed }
$$

- Pre-determined swap rate K. At $T_{i}, 1 \leq i \leq n$,
- pay ΔK,
- receive LIBOR, $\Delta L\left(T_{i-1}, T_{i}\right)=\Delta\left(\frac{1}{P\left(T_{i-1}, T_{i}\right)}-1\right)$.

Interest rate swaps

- Exchange a stream of fixed-rate for floating-rate payments
- Consider a tenor structure,

$$
T_{0}<T_{1}<\cdots<T_{n}, \quad \Delta=T_{i}-T_{i-1} \text { fixed }
$$

- Pre-determined swap rate K. At $T_{i}, 1 \leq i \leq n$,
- pay ΔK,
- receive LIBOR, $\Delta L\left(T_{i-1}, T_{i}\right)=\Delta\left(\frac{1}{P\left(T_{i-1}, T_{i}\right)}-1\right)$.
- Value of swap at $t \leq T_{0}$:

$$
\Pi_{t}^{\text {swap }}=\underbrace{P\left(t, T_{0}\right)-P\left(t, T_{n}\right)}_{\text {floating leg }}-\underbrace{\Delta K \sum_{i=1}^{n} P\left(t, T_{i}\right)}_{\text {fixed leg }}
$$

Swaptions

- Swaption $=$ option to enter the swap at $T=T_{0}$
- The value at expiry T is

$$
C_{T}=\left(\Pi_{T}^{\text {swap }}\right)^{+}=\left(\sum_{i=0}^{n} c_{i} P\left(T, T_{i}\right)\right)^{+}
$$

where $c_{0}=1, c_{1}=\cdots=c_{n-1}=-\Delta K, c_{n}=-1-\Delta K$.

Swaptions

- Swaption $=$ option to enter the swap at $T=T_{0}$
- The value at expiry T is

$$
C_{T}=\left(\Pi_{T}^{\text {swap }}\right)^{+}=\left(\sum_{i=0}^{n} c_{i} P\left(T, T_{i}\right)\right)^{+}
$$

where $c_{0}=1, c_{1}=\cdots=c_{n-1}=-\Delta K, c_{n}=-1-\Delta K$.

- Hence its price at $t \leq T$ is

$$
\Pi_{t}^{\text {swpt }}=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} C_{T} \mid \mathcal{F}_{t}\right]=\frac{1}{\zeta_{t}} \mathbb{E}\left[p_{\text {swap }}\left(X_{T}\right)^{+} \mid \mathcal{F}_{t}\right]
$$

where the affine function $p_{\text {swap }}$ is given by

$$
p_{\text {swap }}(x)=\sum_{i=1}^{n} c_{i} \mathrm{e}^{-\alpha T_{i}} \mathbb{E}_{x}\left[p_{\zeta}\left(X_{T_{i}-T}\right)\right]
$$

Swaption pricing

- The swaption price is

$$
\Pi_{t}^{\text {swpt }}=\frac{1}{\zeta_{t}} \int_{\mathbb{R}^{d}} p_{\text {swap }}(x)^{+} F(\mathrm{~d} x)
$$

where $F(\mathrm{~d} x)$ is law of $\left(X_{T} \mid \mathcal{F}_{t}\right)$.

- For $d \geq 2$ this is numerically challenging
- Use Fourier techniques to reduce to line integral:

Swaption pricing

- The swaption price is

$$
\Pi_{t}^{\text {swpt }}=\frac{1}{\zeta_{t}} \int_{\mathbb{R}^{d}} p_{\text {swap }}(x)^{+} F(\mathrm{~d} x)
$$

where $F(\mathrm{~d} x)$ is law of $\left(X_{T} \mid \mathcal{F}_{t}\right)$.

- For $d \geq 2$ this is numerically challenging
- Use Fourier techniques to reduce to line integral:

Assume $\mathbb{E}\left[\mathrm{e}^{\mu p_{\text {swap }}\left(X_{T}\right)}\right]<\infty$ for some $\mu>0$. Then

$$
\Pi_{t}^{\text {swpt }}=\frac{1}{\zeta_{t} \pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu+\mathrm{i} \lambda)}{(\mu+\mathrm{i} \lambda)^{2}}\right] \mathrm{d} \lambda
$$

where $\widehat{q}(z)=\mathbb{E}\left[\exp \left(z p_{\text {swap }}\left(X_{T}\right)\right) \mid \mathcal{F}_{t}\right]$.

Empirics

Data

- Swap rates and implied ATM swaption (Bachelier) volatilities from Bloomberg
- Swap maturities $T_{n}: 1 \mathrm{Y}, 2 \mathrm{Y}, 3 \mathrm{Y}, 5 \mathrm{Y}, 7 \mathrm{Y}, 10 \mathrm{Y}$
- Swaptions: $T=3$ month options on $1 \mathrm{Y}, 2 \mathrm{Y}, 3 \mathrm{Y}, 5 \mathrm{Y}, 7 \mathrm{Y}, 10 \mathrm{Y}$ (forward starting) swaps
- 827 weekly observations, Jan 29, 1997 - Nov 28, 2012
- Estimation approach: Quasi-maximum likelihood in conjunction with the (extended) Kalman filter

Calibration to swap rates

- 3-factor Linear-rational square-root (LRSQ) model:

$$
\begin{aligned}
& \quad \mathrm{d} \widehat{X}_{t}=\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\operatorname{Diag}\left(\widehat{\sigma}_{1} \sqrt{\widehat{X}_{1 t}}, \ldots, \widehat{\sigma}_{3} \sqrt{\widehat{X}_{3 t}}\right) \mathrm{d} \widehat{W}_{t} \\
& \widehat{p}_{\zeta}(\widehat{x})=1+\mathbf{1}^{\top} \widehat{x} \\
& \text { with } \widehat{\kappa} \text { lower triangular for parsimony. }
\end{aligned}
$$

Calibration to swap rates

- 3-factor Linear-rational square-root (LRSQ) model:

$$
\begin{aligned}
\mathrm{d} \widehat{X}_{t} & =\widehat{\kappa}\left(\widehat{\theta}-\widehat{X}_{t}\right) \mathrm{d} t+\operatorname{Diag}\left(\widehat{\sigma}_{1} \sqrt{\widehat{X}_{1 t}}, \ldots, \widehat{\sigma}_{3} \sqrt{\widehat{X}_{3 t}}\right) \mathrm{d} \widehat{W}_{t} \\
\widehat{p}_{\zeta}(\widehat{x}) & =1+\mathbf{1}^{\top} \widehat{x}
\end{aligned}
$$

with $\widehat{\kappa}$ lower triangular for parsimony.

- Results:

$$
\widehat{\kappa}=\left(\begin{array}{rrr}
0.07 & 0 & 0 \\
-0.13 & 0.35 & 0 \\
0.00 & -0.41 & 0.91
\end{array}\right) \quad \widehat{\theta}=\left(\begin{array}{l}
0.97 \\
0.36 \\
0.16
\end{array}\right) \quad \widehat{\sigma}=\left(\begin{array}{l}
0.40 \\
0.33 \\
0.10
\end{array}\right)
$$

- Range of short rates, $r_{t} \in\left[0, \alpha^{*}-\alpha_{*}\right]$:

$$
\alpha^{*}-\alpha_{*} \approx 0.97
$$

Not a binding restriction.

Calibration to swap rates

Calibration to swap rates and swaptions

Two main challenges:

- Simultaneous fit to swaps and swaptions requires USV \Longrightarrow introduce unspanned factors
- Efficient swaption pricing is necessary for calibration to time series data

Swaption pricing in the LRSQ model

- Recall swaption pricing formula:

$$
\Pi^{\text {swpt }}=\frac{\mathrm{e}^{\alpha t}}{p_{\zeta}(x) \pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu+\mathrm{i} \lambda)}{(\mu+\mathrm{i} \lambda)^{2}}\right] \mathrm{d} \lambda
$$

where $\widehat{q}(z)=\mathbb{E}_{x}\left[\exp \left(z p_{\text {swap }}\left(X_{T}\right)\right)\right]$ with $p_{\text {swap }}$ affine.

Swaption pricing in the LRSQ model

- Recall swaption pricing formula:

$$
\Pi^{\text {swpt }}=\frac{\mathrm{e}^{\alpha t}}{p_{\zeta}(x) \pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu+\mathrm{i} \lambda)}{(\mu+\mathrm{i} \lambda)^{2}}\right] \mathrm{d} \lambda
$$

where $\widehat{q}(z)=\mathbb{E}_{x}\left[\exp \left(z p_{\text {swap }}\left(X_{T}\right)\right)\right]$ with $p_{\text {swap }}$ affine.

- Exponential-affine transform formula: For any $u \in \mathbb{C}, v \in \mathbb{C}^{d}$,

$$
\mathbb{E}_{x}\left[\mathrm{e}^{u+v^{\top} x_{t}}\right]=\mathrm{e}^{\Phi(t)+\Psi(t)^{\top} x}, \quad x \in \mathbb{R}_{+}^{d},
$$

where (Φ, Ψ) solves the Riccati system

$$
\begin{cases}\Phi^{\prime}=(\kappa \theta)^{\top} \Psi & \\ & \Phi(0)=u \\ \Psi_{i}^{\prime}=-\kappa_{i}^{\top} \Psi+\frac{1}{2} \sigma_{i}^{2} \Psi_{i}^{2} & \Psi_{i}(0)=v_{i}, \quad i=1, \ldots, d\end{cases}
$$

Swaption pricing in the LRSQ model

- Recall swaption pricing formula:

$$
\Pi^{\text {swpt }}=\frac{\mathrm{e}^{\alpha t}}{p_{\zeta}(x) \pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu+\mathrm{i} \lambda)}{(\mu+\mathrm{i} \lambda)^{2}}\right] \mathrm{d} \lambda
$$

where $\widehat{q}(z)=\mathbb{E}_{x}\left[\exp \left(z p_{\text {swap }}\left(X_{T}\right)\right)\right]$ with $p_{\text {swap }}$ affine.

- Currently, we can compute the prices at $t_{i}, i=1, \ldots, 827$, of an ATM swaption in <1 second in MATLAB on a standard desktop computer, with relative error $\approx 0.1 \%$.

Calibration to swap rates and swaptions

Unspanned factors:

- State space $E=\mathbb{R}_{+}^{3+k}$,

$$
\begin{aligned}
& \mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\operatorname{Diag}\left(\sigma_{1} \sqrt{X_{1 t}}, \ldots, \sigma_{3+k} \sqrt{X_{3+k, t}}\right) \mathrm{d} W_{t} \\
& \text { where } \kappa \in \mathbb{R}^{(3+k) \times(3+k)}, \theta \in \mathbb{R}_{+}^{3+k}, \sigma_{i}>0(i=1, \ldots, 3+k)
\end{aligned}
$$

Calibration to swap rates and swaptions

Unspanned factors:

- State space $E=\mathbb{R}_{+}^{3+k}$,

$$
\mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\operatorname{Diag}\left(\sigma_{1} \sqrt{X_{1 t}}, \ldots, \sigma_{3+k} \sqrt{X_{3+k, t}}\right) \mathrm{d} W_{t}
$$

where $\kappa \in \mathbb{R}^{(3+k) \times(3+k)}, \theta \in \mathbb{R}_{+}^{3+k}, \sigma_{i}>0(i=1, \ldots, 3+k)$

- If $k=1$ we can take the first factor unspanned:

$$
\kappa=\left(\begin{array}{lll|l}
\kappa_{11} & & & \\
\kappa_{21} & \kappa_{22} & & \kappa_{21} \\
\kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} \\
\hline & & & \kappa_{11}
\end{array}\right)
$$

\rightarrow Two extra parameters $\left(\theta_{4}, \sigma_{4}\right)$ compared to 3-factor model.
\rightarrow One unspanned factor.

Calibration to swap rates and swaptions

Unspanned factors:

- State space $E=\mathbb{R}_{+}^{3+k}$,
$\mathrm{d} X_{t}=\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\operatorname{Diag}\left(\sigma_{1} \sqrt{X_{1 t}}, \ldots, \sigma_{3+k} \sqrt{X_{3+k, t}}\right) \mathrm{d} W_{t}$
where $\kappa \in \mathbb{R}^{(3+k) \times(3+k)}, \theta \in \mathbb{R}_{+}^{3+k}, \sigma_{i}>0(i=1, \ldots, 3+k)$
- If $k=1$ we can take the first factor unspanned:

$$
\kappa=\left(\begin{array}{ccc|c}
\kappa_{11} & & & \\
\kappa_{21} & \kappa_{22} & & \kappa_{21} \\
\kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} \\
\hline & & & \kappa_{11}
\end{array}\right)
$$

\rightarrow Two extra parameters $\left(\theta_{4}, \sigma_{4}\right)$ compared to 3-factor model.
\rightarrow One unspanned factor.

- Similarly, we can let first + second or all three factors be unspanned (or other combinations)

Calibration to swap rates and swaptions

Results for swap rates

Calibration to swap rates and swaptions

Results for swaption implied volatilities

Calibration to swap rates and swaptions

Camparing USV specifications (Std. dev. of pricing error):

Bars	Factors unspanned	Bars	Factors unspanned
1	1st	5	1st and 3rd
2	2nd	6	2nd and 3rd
3	3rd	7	all three
4	1st and 2nd		

Conclusion

- Processes with affine drift combined with an affine state price density yield a large class of tractable term structure models: The Linear-Rational term structure models.
- Unlike affine term structure models, we combine:
- Explicit bond prices, short rates, forward rates
- Both risk-neutral and historical dynamics (MPR, risk premie)
- Nonnegative short rates
- Simple ways to incorporate USV (crucial for fitting swaptions)
- Very fast swaption pricing
- Great fit to market data (swaps + swaptions)

