Martin Larsson

Swiss Finance Institute Ecole Polytechnique Fédérale de Lausanne

Joint with Damir Filipović and Anders Trolle

Current Topics in Mathematical Finance Vienna University of Economics and Business

April 18, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Goals

- Three desirable feature of a term structure model:
 - Tractable pricing formulas (for zero-coupon bonds this is a necessity, but clearly desirable also for more complicated contracts such as swaptions)
 - Nonnegative short rate
 - Unspanned Stochastic Volatility
- Affine term structure models have great difficulty combining these features

- Goal: Develop a framework where all these features are naturally present
- Illustrate on swaption pricing

Outline

Linear-Rational Term Structure Models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Unspanned Stochastic Volatility
- Swaption Pricing
- Empirics
- Conclusion

Linear-Rational

Term Structure Models

Filtered probability space (Ω, F, (F_t)_{t≥0}, ℙ), ℙ is historical probability measure

Filtered probability space (Ω, F, (F_t)_{t≥0}, ℙ), ℙ is historical probability measure

• State price density: positive supermartingale $(\zeta_t)_{t\geq 0}$

- Filtered probability space (Ω, F, (F_t)_{t≥0}, ℙ), ℙ is historical probability measure
- State price density: positive supermartingale $(\zeta_t)_{t\geq 0}$
- Model price at t of any claim C maturing at T:

$$\Pi_{C}(t,T) := \frac{1}{\zeta_{t}} \mathbb{E} \left[\zeta_{T} C \mid \mathcal{F}_{t} \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This gives an arbitrage-free price system.

- Filtered probability space (Ω, F, (F_t)_{t≥0}, ℙ), ℙ is historical probability measure
- State price density: positive supermartingale $(\zeta_t)_{t\geq 0}$
- Model price at t of any claim C maturing at T:

$$\Pi_{C}(t,T) := \frac{1}{\zeta_{t}} \mathbb{E} \left[\zeta_{T} C \mid \mathcal{F}_{t} \right]$$

This gives an arbitrage-free price system.

• Relation to short rate r_t and pricing measure \mathbb{Q} :

$$\zeta_t \propto \mathrm{e}^{-\int_0^t r_s ds} \mathbb{E}\left[\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} \mid \mathcal{F}_t\right]$$

This approach was used by

- Constantinides (1992)
- Rogers (1997)
- Flesaker & Hughston (1996)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Gabaix (2007)
- ▶ ...

This approach was used by

- Constantinides (1992)
- Rogers (1997)
- Flesaker & Hughston (1996)
- Gabaix (2007)
- Þ ...

How to tractably model ζ_t ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ingredients:

• Factor process X with state space $E \subset \mathbb{R}^d$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Positive function p_{ζ} on E
- Real parameter α

Ingredients:

- Factor process X with state space $E \subset \mathbb{R}^d$
- Positive function p_{ζ} on E
- \blacktriangleright Real parameter α

Non-normalized state price density:

$$\zeta_t = \mathrm{e}^{-\alpha t} p_{\zeta}(X_t)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ingredients:

- Factor process X with state space $E \subset \mathbb{R}^d$
- Positive function p_{ζ} on E
- Real parameter α

Non-normalized state price density:

$$\zeta_t = \mathrm{e}^{-\alpha t} p_{\zeta}(X_t)$$

Key idea (Linear-Rational Term Structure model):

- $p_{\zeta}(x) = \phi + \psi^{\top} x$, positive on E
- X with affine drift:

$$\mathrm{d}X_t = \kappa \left(\theta - X_t\right) \mathrm{d}t + \mathrm{d}M_t,$$

where $\kappa \in \mathbb{R}^{d \times d}$, $\theta \in \mathbb{R}^d$, M is a martingale.

Lemma. The conditional expectation of X_T is

$$\mathbb{E}\left[X_T \mid \mathcal{F}_t\right] = heta + \mathrm{e}^{-\kappa(T-t)}(X_t - heta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma. The conditional expectation of
$$X_T$$
 is

$$\mathbb{E}\left[X_{\mathcal{T}} \mid \mathcal{F}_t
ight] = heta + \mathrm{e}^{-\kappa(\mathcal{T}-t)}(X_t - heta)$$

Consequences:

• Linear-rational (and explicit) bond price system:

$$P(t, t + \tau) = \frac{e^{-\alpha\tau}}{p_{\zeta}(X_t)} \mathbb{E}[p_{\zeta}(X_{t+\tau}) \mid \mathcal{F}_t] = F(\tau, X_t),$$

where $F(\tau, x) = \frac{(\phi + \psi^{\top}\theta)e^{-\alpha\tau} + \psi^{\top}e^{-(\alpha+\kappa)\tau}(x-\theta)}{\phi + \psi^{\top}x}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Lemma. The conditional expectation of
$$X_T$$
 is

$$\mathbb{E}\left[X_{\mathcal{T}} \mid \mathcal{F}_t\right] = heta + \mathrm{e}^{-\kappa(\mathcal{T}-t)}(X_t - heta)$$

Consequences:

Linear-rational (and explicit) bond price system:

$$P(t, t + \tau) = \frac{e^{-\alpha\tau}}{p_{\zeta}(X_t)} \mathbb{E}[p_{\zeta}(X_{t+\tau}) \mid \mathcal{F}_t] = F(\tau, X_t),$$

where $F(\tau, x) = \frac{(\phi + \psi^{\top}\theta)e^{-\alpha\tau} + \psi^{\top}e^{-(\alpha+\kappa)\tau}(x-\theta)}{\phi + \psi^{\top}x}$

• Linear-rational short rate: $r_t = \alpha - \frac{\psi^\top \kappa (\theta - X_t)}{\phi + \psi^\top X_t}$

Intrinsic choice of $\boldsymbol{\alpha}$

Define

$$\alpha^* = \sup_{\mathbf{x}\in E} \frac{\psi^\top \kappa \left(\theta - \mathbf{x}\right)}{\phi + \psi^\top \mathbf{x}} \qquad \qquad \alpha_* = \inf_{\mathbf{x}\in E} \frac{\psi^\top \kappa \left(\theta - \mathbf{x}\right)}{\phi + \psi^\top \mathbf{x}}.$$

▶ Should arrange so that $\alpha^* < \infty$ to get r_t bounded below

• With
$$\alpha = \alpha^*$$
, we get

$$r_t \in [0, \alpha^* - \alpha_*]$$

(ロ)、(型)、(E)、(E)、 E) の(の)

For the model to be useful, this range must be wide enough

Unspanned Stochastic Volatility

Empirical fact: Volatility risk cannot be hedged using bonds

- Collin-Dufresne & Goldstein (02): Interest rate swaps can hedge only 10%–50% of variation in ATM straddles (a volatility-sensitive instrument)
- Heidari & Wu (03): Level/curve/slope explain 99.5% of yield curve variation, but 59.5% of variation in swaption implied vol

This phenomenon is called Unspanned Stochastic Volatility (USV).

Empirical fact: Volatility risk cannot be hedged using bonds

- Collin-Dufresne & Goldstein (02): Interest rate swaps can hedge only 10%–50% of variation in ATM straddles (a volatility-sensitive instrument)
- Heidari & Wu (03): Level/curve/slope explain 99.5% of yield curve variation, but 59.5% of variation in swaption implied vol

This phenomenon is called Unspanned Stochastic Volatility (USV). In our Linear-Rational setting this is operationalized as:

Definition. The state process has **unspanned factors** if the current state X_t cannot be inferred from $\{P(t, t + \tau), \tau \ge 0\}$. Equivalently, the map $E \ni x \mapsto F(\cdot, x)$ is not injective.

Theorem. Assume that $int(E) \neq \emptyset$ and that all eigenvalues of κ are nonzero. The following are equivalent:

- (i) The state process has unspanned factors
- (ii) There exists $u \in \mathbb{R}^d \setminus \{0\}$ such that $F(\cdot, x) \equiv F(\cdot, x + su)$ for all $x \in \mathbb{R}^d$ and all $s \in \mathbb{R}$
- (iii) There exists $u \in \mathbb{R}^d \setminus \{0\}$ such that $\psi^\top e^{-\kappa \tau} u = 0$, all $\tau \ge 0$

Any u that works in (ii) also works in (iii), and vice versa.

Theorem. Assume that $int(E) \neq \emptyset$ and that all eigenvalues of κ are nonzero. The following are equivalent:

- (i) The state process has unspanned factors
- (ii) There exists $u \in \mathbb{R}^d \setminus \{0\}$ such that $F(\cdot, x) \equiv F(\cdot, x + su)$ for all $x \in \mathbb{R}^d$ and all $s \in \mathbb{R}$
- (iii) There exists $u \in \mathbb{R}^d \setminus \{0\}$ such that $\psi^\top e^{-\kappa \tau} u = 0$, all $\tau \ge 0$

Any u that works in (ii) also works in (iii), and vice versa.

Define the subspace U of unspanned directions:

$$U = \left\{ u \in \mathbb{R}^d : \psi^\top e^{-\kappa \tau} u = 0 \text{ for all } \tau \ge 0 \right\}$$

The "number of unspanned factors" is the dimension of U.

When do we have unspanned factors?

Theorem. Let $\lambda_1, \ldots, \lambda_n$ $(n \le d)$ denote the distinct eigenvalues of κ , and let m_1, \ldots, m_n be their geometric multiplicities. Then

dim
$$U \ge (m_1 - 1) + \cdots + (m_n - 1)$$
.

If κ is diagonalizable with real eigenvalues, and ψ is not orthogonal to any eigenspace $\text{Ker}(\lambda_i - \kappa)$, i = 1, ..., n, the above inequality is in fact an equality.

By previous theorem, need geometric multiplicity of eigenvalues of κ . We can do this by adding factors to an initial model.

By previous theorem, need geometric multiplicity of eigenvalues of κ . We can do this by adding factors to an initial model.

Consider a d-factor Linear-Rational model

$$\mathrm{d}\widehat{X}_t = \widehat{\kappa}\left(\widehat{\theta} - \widehat{X}_t\right)\mathrm{d}t + \mathrm{d}\widehat{M}_t, \qquad \widehat{\rho}_{\zeta}(\widehat{x}) = \widehat{\phi} + \widehat{\psi}^{\top}\widehat{x},$$

with $\hat{\kappa}$ unrestricted. Suppose this can capture the dynamics of the yield curve (in practice, d = 3 is enough.)

By previous theorem, need geometric multiplicity of eigenvalues of κ . We can do this by adding factors to an initial model.

Consider a *d*-factor Linear-Rational model

$$\mathrm{d}\widehat{X}_t = \widehat{\kappa}\left(\widehat{\theta} - \widehat{X}_t\right)\mathrm{d}t + \mathrm{d}\widehat{M}_t, \qquad \widehat{\rho}_{\zeta}(\widehat{x}) = \widehat{\phi} + \widehat{\psi}^{\top}\widehat{x},$$

with $\hat{\kappa}$ unrestricted. Suppose this can capture the dynamics of the yield curve (in practice, d = 3 is enough.)

 "Generically" (on a full-measure set of parameters), no unspanned factors are present.

By previous theorem, need geometric multiplicity of eigenvalues of κ . We can do this by adding factors to an initial model.

Consider a d-factor Linear-Rational model

$$\mathrm{d}\widehat{X}_t = \widehat{\kappa}\left(\widehat{\theta} - \widehat{X}_t\right)\mathrm{d}t + \mathrm{d}\widehat{M}_t, \qquad \widehat{\rho}_{\zeta}(\widehat{x}) = \widehat{\phi} + \widehat{\psi}^{\top}\widehat{x},$$

with $\hat{\kappa}$ unrestricted. Suppose this can capture the dynamics of the yield curve (in practice, d = 3 is enough.)

- "Generically" (on a full-measure set of parameters), no unspanned factors are present.
- Suppose want to include swaptions; need unspanned factors.
- Idea: Construct a (d + k)-factor model that is observationally equivalent to a d-factor model when calibrated to bonds only.

Consider now a (d + k)-factor model on $E \subset \mathbb{R}^{d+k}$ of the form:

 $\mathrm{d}X_t = \kappa \left(\theta - X_t\right) \mathrm{d}t + \mathrm{d}M_t, \qquad p_{\zeta}(x) = \phi + \psi^{\top} x.$

Consider now a (d + k)-factor model on $E \subset \mathbb{R}^{d+k}$ of the form:

$$\mathrm{d}X_t = \kappa \left(\theta - X_t\right) \mathrm{d}t + \mathrm{d}M_t, \qquad p_\zeta(x) = \phi + \psi^\top x.$$

Theorem. Let $A : \mathbb{R}^{d+k} \to \mathbb{R}^d$ be linear and define $\widehat{X} = AX$. Then

$$\mathrm{d}\widehat{X}_t = \widehat{\kappa}\left(\widehat{\theta} - \widehat{X}_t\right)\mathrm{d}t + \mathrm{d}\widehat{M}_t, \qquad \widehat{M} = AM_t$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

if and only if $A\kappa = \widehat{\kappa}A$ and $\widehat{\kappa}A\theta = \widehat{\kappa}\widehat{\theta}$.

Consider now a (d + k)-factor model on $E \subset \mathbb{R}^{d+k}$ of the form:

$$\mathrm{d}X_t = \kappa \left(\theta - X_t\right) \mathrm{d}t + \mathrm{d}M_t, \qquad p_\zeta(x) = \phi + \psi^\top x.$$

Theorem. Let $A : \mathbb{R}^{d+k} \to \mathbb{R}^d$ be linear and define $\widehat{X} = AX$. Then

$$\mathrm{d}\widehat{X}_t = \widehat{\kappa}\left(\widehat{\theta} - \widehat{X}_t\right)\mathrm{d}t + \mathrm{d}\widehat{M}_t, \qquad \widehat{M} = AM_t$$

if and only if $A\kappa = \widehat{\kappa}A$ and $\widehat{\kappa}A\theta = \widehat{\kappa}\widehat{\theta}$.

Furthermore, let P(t, T) and $\hat{P}(t, T)$ be the respective bond prices. Then

$$P(t,T)=\widehat{P}(t,T)$$
 for all $0\leq t\leq T$

if and only if $\widehat{\phi} = \phi$ and $A^{\top} \widehat{\psi} = \psi$.

The extended model (X, p_{ζ}) has unspanned factors:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The extended model (X, p_{ζ}) has unspanned factors:

Hence for $u \in Ker(A)$ we have

$$F(au, x + su) = F(au, x)$$
 for all $au \ge 0, \ s \in \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Therefore, dim $U \ge \dim \operatorname{Ker}(A) \ge k$.

The extended model (X, p_{ζ}) has unspanned factors:

Task: Find some A and a class of κ and $\hat{\kappa}$ such that $A\kappa = \hat{\kappa}A$. Any choice of θ , M then gives \hat{X} by setting

$$\widehat{\theta} = A\theta, \quad \widehat{M} = AM.$$

Given $\widehat{\phi}$, $\widehat{\psi}$ we get ϕ , ψ by setting $\phi = \widehat{\phi}$, $\psi = A^{\top} \widehat{\psi}$.

Example (d = 3, k = 1, first factor unspanned): Set

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} \widehat{X}_1 \\ \widehat{X}_2 \\ \widehat{X}_3 \end{pmatrix} = AX = \begin{pmatrix} X_1 + X_4 \\ X_2 \\ X_3 \end{pmatrix}$$

Example (d = 3, k = 1, first factor unspanned): Set

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} \widehat{X}_1 \\ \widehat{X}_2 \\ \widehat{X}_3 \end{pmatrix} = AX = \begin{pmatrix} X_1 + X_4 \\ X_2 \\ X_3 \end{pmatrix}$$

Define

$$\kappa = \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} & \\ \kappa_{21} & \kappa_{22} & \kappa_{21} & \kappa_{21} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} \\ & & & \kappa_{11} \end{pmatrix}, \qquad \widehat{\kappa} = \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{21} & \kappa_{22} & \kappa_{21} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} \end{pmatrix}$$

Example (d = 3, k = 1, first factor unspanned): Set

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} \widehat{X}_1 \\ \widehat{X}_2 \\ \widehat{X}_3 \end{pmatrix} = AX = \begin{pmatrix} X_1 + X_4 \\ X_2 \\ X_3 \end{pmatrix}$$

Define

Then $A\kappa = \hat{\kappa}A$, and dim U = 1 for generic parameter values.

Note: κ only depends on $3 \times 3 = 9$ parameters.

Example (d = 3, k = 2, first and second factors unspanned):

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} \widehat{X}_1 \\ \widehat{X}_2 \\ \widehat{X}_3 \end{pmatrix} = AX = \begin{pmatrix} X_1 + X_4 \\ X_2 + X_5 \\ X_3 \end{pmatrix}$$

Example (d = 3, k = 2, first and second factors unspanned):

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} \widehat{X}_1 \\ \widehat{X}_2 \\ \widehat{X}_3 \end{pmatrix} = AX = \begin{pmatrix} X_1 + X_4 \\ X_2 + X_5 \\ X_3 \end{pmatrix}$$

Define

$$\kappa = \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} & & \\ \kappa_{21} & \kappa_{22} & \kappa_{23} & & \\ \kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{31} & \kappa_{32} \\ & & & \kappa_{11} & \kappa_{12} \\ & & & & \kappa_{21} & \kappa_{22} \end{pmatrix}, \qquad \widehat{\kappa} = \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{21} & \kappa_{22} & \kappa_{21} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} \end{pmatrix}$$

Then $A\kappa = \hat{\kappa}A$, and dim U = 2 for generic parameter values.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Canonical representation

Theorem. Assume $E = \mathbb{R}^d_+$, consider any linear-rational model with interest rates bounded below. Then, w.l.o.g. one can take

$$p_{\zeta}(x) = 1 + \mathbf{1}_m^{\top} x,$$

where
$$\mathbf{1}_m = (\underbrace{1, \ldots, 1}_{m \ times}, 0, \ldots, 0) \in \mathbb{R}^d.$$

The intrinsic choice $\alpha = \alpha^*$ yields $r_t \in [0, \alpha^* - \alpha_*]$, where

$$\alpha^* = \max\left\{\mathbf{1}_m^\top \kappa \theta, \ -\mathbf{1}_m^\top \kappa_1, \dots, \ -\mathbf{1}_m^\top \kappa_d\right\}$$
$$\alpha_* = \min\left\{\mathbf{1}_m^\top \kappa \theta, \ -\mathbf{1}_m^\top \kappa_1, \dots, \ -\mathbf{1}_m^\top \kappa_d\right\}$$

Swaption pricing

<□ > < @ > < E > < E > E のQ @

Interest rate swaps

- Exchange a stream of fixed-rate for floating-rate payments
- Consider a tenor structure,

$$T_0 < T_1 < \cdots < T_n, \qquad \Delta = T_i - T_{i-1}$$
 fixed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Pre-determined swap rate K. At T_i , $1 \le i \le n$,
 - pay ΔK ,

► receive LIBOR,
$$\Delta L(T_{i-1}, T_i) = \Delta \left(\frac{1}{P(T_{i-1}, T_i)} - 1\right)$$
.

Interest rate swaps

- Exchange a stream of fixed-rate for floating-rate payments
- Consider a tenor structure,

$$T_0 < T_1 < \cdots < T_n, \qquad \Delta = T_i - T_{i-1}$$
 fixed.

- Pre-determined swap rate K. At T_i , $1 \le i \le n$,
 - pay ΔK ,

• receive LIBOR,
$$\Delta L(T_{i-1}, T_i) = \Delta \left(\frac{1}{P(T_{i-1}, T_i)} - 1 \right)$$
.

• Value of swap at $t \leq T_0$:

$$\Pi_{t}^{\text{swap}} = \underbrace{P(t, T_{0}) - P(t, T_{n})}_{\text{floating leg}} - \underbrace{\Delta K \sum_{i=1}^{n} P(t, T_{i})}_{\text{fixed leg}}$$

Swaptions

- Swaption = option to enter the swap at $T = T_0$
- The value at expiry T is

$$C_{T} = \left(\Pi_{T}^{\mathrm{swap}}\right)^{+} = \left(\sum_{i=0}^{n} c_{i} P(T, T_{i})\right)^{+},$$

where $c_0 = 1$, $c_1 = \cdots = c_{n-1} = -\Delta K$, $c_n = -1 - \Delta K$.

Swaptions

- Swaption = option to enter the swap at $T = T_0$
- The value at expiry T is

$$C_{T} = \left(\Pi_{T}^{\mathrm{swap}}\right)^{+} = \left(\sum_{i=0}^{n} c_{i} P(T, T_{i})\right)^{+},$$

where $c_0 = 1$, $c_1 = \cdots = c_{n-1} = -\Delta K$, $c_n = -1 - \Delta K$.

• Hence its price at $t \leq T$ is

$$\Pi_t^{\text{swpt}} = \frac{1}{\zeta_t} \mathbb{E} \left[\zeta_T C_T \mid \mathcal{F}_t \right] = \frac{1}{\zeta_t} \mathbb{E} \left[p_{\text{swap}}(X_T)^+ \mid \mathcal{F}_t \right],$$

where the affine function $p_{\rm swap}$ is given by

$$p_{\mathrm{swap}}(x) = \sum_{i=1}^{n} c_i \mathrm{e}^{-lpha T_i} \mathbb{E}_x[p_{\zeta}(X_{T_i-T})]$$

Swaption pricing

The swaption price is

$$\Pi^{\mathrm{swpt}}_t = \frac{1}{\zeta_t} \int_{\mathbb{R}^d} p_{\mathrm{swap}}(x)^+ F(\mathrm{d} x),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where F(dx) is law of $(X_T | \mathcal{F}_t)$.

• For $d \ge 2$ this is numerically challenging

• Use Fourier techniques to reduce to line integral:

Swaption pricing

The swaption price is

$$\Pi_t^{\text{swpt}} = \frac{1}{\zeta_t} \int_{\mathbb{R}^d} \rho_{\text{swap}}(x)^+ F(\mathrm{d} x),$$

where F(dx) is law of $(X_T | \mathcal{F}_t)$.

• For $d \ge 2$ this is numerically challenging

Use Fourier techniques to reduce to line integral:

Assume $\mathbb{E}[e^{\mu p_{swap}(X_T)}] < \infty$ for some $\mu > 0$. Then

$$\Pi_t^{\text{swpt}} = \frac{1}{\zeta_t \pi} \int_0^\infty \operatorname{Re}\left[\frac{\widehat{q}(\mu + \mathrm{i}\lambda)}{(\mu + \mathrm{i}\lambda)^2}\right] \mathrm{d}\lambda$$
where $\widehat{q}(z) = \mathbb{E}\left[\exp\left(z \, p_{\text{swap}}(X_T)\right) \ \Big| \ \mathcal{F}_t\right].$

Empirics

<□ > < @ > < E > < E > E のQ @

Data

- Swap rates and implied ATM swaption (Bachelier) volatilities from Bloomberg
- ▶ Swap maturities *T_n*: 1Y, 2Y, 3Y, 5Y, 7Y, 10Y
- Swaptions: T = 3 month options on 1Y, 2Y, 3Y, 5Y, 7Y, 10Y (forward starting) swaps

- ▶ 827 weekly observations, Jan 29, 1997 Nov 28, 2012
- Estimation approach: Quasi-maximum likelihood in conjunction with the (extended) Kalman filter

Calibration to swap rates

► 3-factor Linear-rational square-root (LRSQ) model:

$$\mathrm{d}\widehat{X}_{t} = \widehat{\kappa}(\widehat{\theta} - \widehat{X}_{t})\mathrm{d}t + \mathrm{Diag}(\widehat{\sigma}_{1}\sqrt{\widehat{X}_{1t}}, \dots, \widehat{\sigma}_{3}\sqrt{\widehat{X}_{3t}})\mathrm{d}\widehat{W}_{t}$$

・ロト・日本・モト・モート ヨー うへで

$$\widehat{p}_{\zeta}(\widehat{x}) = 1 + \mathbf{1}^{\top}\widehat{x}$$

with $\hat{\kappa}$ lower triangular for parsimony.

Calibration to swap rates

▶ 3-factor Linear-rational square-root (LRSQ) model:

$$d\widehat{X}_{t} = \widehat{\kappa}(\widehat{\theta} - \widehat{X}_{t})dt + \text{Diag}(\widehat{\sigma}_{1}\sqrt{\widehat{X}_{1t}}, \dots, \widehat{\sigma}_{3}\sqrt{\widehat{X}_{3t}})d\widehat{W}_{t}$$
$$\widehat{\rho}_{\zeta}(\widehat{x}) = 1 + \mathbf{1}^{\top}\widehat{x}$$

with $\hat{\kappa}$ lower triangular for parsimony.

Results:

$$\widehat{\kappa} = egin{pmatrix} 0.07 & 0 & 0 \ -0.13 & 0.35 & 0 \ 0.00 & -0.41 & 0.91 \end{pmatrix} \quad \widehat{ heta} = egin{pmatrix} 0.97 \ 0.36 \ 0.16 \end{pmatrix} \quad \widehat{\sigma} = egin{pmatrix} 0.40 \ 0.33 \ 0.10 \end{pmatrix}$$

• Range of short rates, $r_t \in [0, \alpha^* - \alpha_*]$:

$$\alpha^* - \alpha_* \approx 0.97$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Not a binding restriction.

Calibration to swap rates

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○の久(で)

Two main challenges:

Simultaneous fit to swaps and swaptions requires USV

 \implies introduce unspanned factors

 Efficient swaption pricing is necessary for calibration to time series data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Swaption pricing in the LRSQ model

Recall swaption pricing formula:

$$\Pi^{\text{swpt}} = \frac{\mathrm{e}^{\alpha t}}{\rho_{\zeta}(x)\pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu + \mathrm{i}\lambda)}{(\mu + \mathrm{i}\lambda)^{2}}\right] \mathrm{d}\lambda$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\widehat{q}(z) = \mathbb{E}_{x}\left[\exp\left(z \, p_{\text{swap}}(X_{T})\right)\right]$ with p_{swap} affine.

Swaption pricing in the LRSQ model

Recall swaption pricing formula:

$$\Pi^{\text{swpt}} = \frac{\mathrm{e}^{\alpha t}}{p_{\zeta}(x)\pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu + \mathrm{i}\lambda)}{(\mu + \mathrm{i}\lambda)^{2}}\right] \mathrm{d}\lambda$$

where
$$\widehat{q}(z) = \mathbb{E}_{x} \Big[\exp \Big(z \, p_{swap}(X_{T}) \Big) \Big]$$
 with p_{swap} affine.

▶ Exponential-affine transform formula: For any $u \in \mathbb{C}$, $v \in \mathbb{C}^d$,

$$\mathbb{E}_{\mathsf{x}}\left[\mathrm{e}^{u+v^{\top}X_{t}}\right] = \mathrm{e}^{\Phi(t)+\Psi(t)^{\top}x}, \qquad x \in \mathbb{R}^{d}_{+},$$

where (Φ, Ψ) solves the Riccati system

$$\begin{cases} \Phi' = (\kappa\theta)^{\top}\Psi & \Phi(0) = u \\ \Psi'_i = -\kappa_i^{\top}\Psi + \frac{1}{2}\sigma_i^2\Psi_i^2 & \Psi_i(0) = v_i, \quad i = 1, \dots, d \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Swaption pricing in the LRSQ model

Recall swaption pricing formula:

$$\Pi^{\text{swpt}} = \frac{\mathrm{e}^{\alpha t}}{p_{\zeta}(x)\pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{\widehat{q}(\mu + \mathrm{i}\lambda)}{(\mu + \mathrm{i}\lambda)^{2}}\right] \mathrm{d}\lambda$$

where $\widehat{q}(z) = \mathbb{E}_{x}\left[\exp\left(z \, p_{\text{swap}}(X_{T})\right)\right]$ with p_{swap} affine.

► Currently, we can compute the prices at t_i, i = 1,...,827, of an ATM swaption in < 1 second in MATLAB on a standard desktop computer, with relative error ≈ 0.1%.

Unspanned factors:

• State space
$$E = \mathbb{R}^{3+k}_+$$
,

$$dX_t = \kappa (\theta - X_t) dt + \text{Diag} \left(\sigma_1 \sqrt{X_{1t}}, \dots, \sigma_{3+k} \sqrt{X_{3+k,t}} \right) dW_t$$

where $\kappa \in \mathbb{R}^{(3+k) \times (3+k)}, \ \theta \in \mathbb{R}^{3+k}_+, \ \sigma_i > 0 \ (i = 1, \dots, 3+k)$

(ロ)、(型)、(E)、(E)、 E) の(の)

Unspanned factors:

• State space
$$E = \mathbb{R}^{3+k}_+$$
,

$$dX_t = \kappa (\theta - X_t) dt + \text{Diag} \left(\sigma_1 \sqrt{X_{1t}}, \dots, \sigma_{3+k} \sqrt{X_{3+k,t}} \right) dW_t$$

where $\kappa \in \mathbb{R}^{(3+k) \times (3+k)}$, $\theta \in \mathbb{R}^{3+k}_+$, $\sigma_i > 0$ $(i = 1, \dots, 3+k)$
If $k = 1$ we can take the first factor unspanned:

$$\kappa = \begin{pmatrix} \kappa_{11} & & \\ \kappa_{21} & \kappa_{22} & & \kappa_{21} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} & & \kappa_{31} \\ \hline & & & & & \kappa_{11} \end{pmatrix}$$

→ Two extra parameters (θ_4 , σ_4) compared to 3-factor model. → One unspanned factor.

Unspanned factors:

• State space
$$E = \mathbb{R}^{3+k}_+$$
,

$$dX_t = \kappa (\theta - X_t) dt + \text{Diag} \left(\sigma_1 \sqrt{X_{1t}}, \dots, \sigma_{3+k} \sqrt{X_{3+k,t}} \right) dW_t$$

where $\kappa \in \mathbb{R}^{(3+k) \times (3+k)}$, $\theta \in \mathbb{R}^{3+k}_+$, $\sigma_i > 0$ $(i = 1, \dots, 3+k)$
If $k = 1$ we can take the first factor unspanned:

→ Two extra parameters (θ_4 , σ_4) compared to 3-factor model. → One unspanned factor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Similarly, we can let first + second or all three factors be unspanned (or other combinations)

Results for swap rates

600 700

> 800 ann

Results for swaption implied volatilities

SAR

Camparing USV specifications (Std. dev. of pricing error):

Bars	Factors unspanned	Bars	Factors unspanned
1	1st	5	1st and 3rd
2	2nd	6	2nd and 3rd
3	3rd	7	all three
4	1st and 2nd		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

- Processes with affine drift combined with an affine state price density yield a large class of tractable term structure models: The Linear-Rational term structure models.
- Unlike affine term structure models, we combine:
 - Explicit bond prices, short rates, forward rates
 - Both risk-neutral and historical dynamics (MPR, risk premie)
 - Nonnegative short rates
 - Simple ways to incorporate USV (crucial for fitting swaptions)

- Very fast swaption pricing
- Great fit to market data (swaps + swaptions)