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Introduction

1. Introduction

A credit risky position is characterised by

A stopping time τ (default time)

The loss given default δ

Simplest model: τ is deterministic.

τ is exponential (λ)
P(τ > t) = exp(−λt).

τ is the first jumping time of a renewal process

P(τ > t) = G(t).
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Introduction

We start with a given filtration F = (Ft)t≥0 (asset information).

First passage time models (threshold models)

Consider a non-negative F-progressive process (λt)t≥0 and an independent
exponential (1)- random variable Θ. Set

τ := inf{t ≥ 0 :

∫ t

0

λsds ≥ Θ}.

Then,

P(τ > t) = P
(∫ t

0

λsds < Θ
)

= E
(

exp(−
∫ t

0

λsds)
)
.

Moreover, if (rt)t≥0 is independent of Θ, then

P(0,T ) = EQ
(

exp(−
∫ T

0

rsds)1{τ>T}

)
= EQ

(
exp(−

∫ T

0

(rs + λs)ds)
)
.
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Introduction

The problem

In general the driving process λ is not observable.

On the market, information is available through traded instruments which
give noisy information about λ.

Defaults are observable which give jump-information on the problem.

We formulate this as as filtering problem.
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Filtering in credit risk

Filtering

We consider an unobserved state process X on Rd which is the solution of the
SDE

Xt = X0 +

∫ t

0

b(Xs)ds +

∫ t

0

σ(Xs)dVs , 0 ≤ t ≤ T , (1)

for a m-dimensional F-Brownian motion V . We denote the generator of X by

L =
d∑

i=1

bi (x)
∂

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
.

Then for f ∈ C 2
b (Rd), the process f (Xt)− f (X0)−

∫ t

0
L f (Xs)ds is a

martingale.
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Filtering in credit risk

Observation

The observation is given by

continuous observations given by the continuous process

Zt =

∫ t

0

h(Xs)ds + Wt ,

where W is independent of X , and

jump information given by a counting process N with intensity (λ(Xt))t≥0.
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Filtering in credit risk

More formally, Let FZ ,N
t := σ(Zu,Nu : 0 ≤ u ≤ t) denote the observation

filtration. We are interested in the conditional distribution of Xt given the
observation which is determined by

πt(f ) := E
(
f (Xt)|FZ ,N

t

)
, f ∈ L∞(Rd).
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Filtering in credit risk

Example

Consider a portfolio credit risk model driven by factor process X .

Large homogeneous portfolio is given by a doubly stochastic Poisson
process N with intensity λ(Xt).

X is not observable, but market instrumtens give noisy observations of X ,
modelled by Z .

Of course N is observable.

We obtain the following connection to nonlinear filtering:

credit derivative: some FN
T -measurable payoff H with price

Ht = EQ(H | FZ ,N
t )

(under full information / no statistical insecurity). We obtain

Ht = EQ
(
EQ(H | Ft) | FZ ,N

t

)
.

As (X ,N) is F-Markov, EQ(H|Ft) = h(t,Xt ,Nt) such that

Ht = EQ(h(t,Xt ,Nt)|FZ ,N
t

)
.
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Filtering in credit risk

Our aim is to derive the Zakai equation by a change of measure argument. By
the Girsanov theorem we can find an equivalent measure P0 such that
dP = ΛTdP0.

The Kallianpur-Striebel formula relates the conditional distribution π to the
unnormalized density ρt(f ) := E0[f (Xt)|FZ ,N

t ]:

πt(f ) =
E0(f (Xt)Λt |FZ ,N

t )

E0(Λt |FZ ,N
t )

=
ρt(f )

ρt(1)
. (2)
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Filtering in credit risk

We explicitely construct a useful change of measure as follows: let

Λt :=
∏
τn≤t

λ(Xτn−) · exp

(∫ t

0

h(Xs)
>dWs +

1

2

∫ t

0

‖h(Xs)‖2ds −
∫ t

0

(λ(Xs)− 1)ds

)

and define dP0 := Λ−1
T dP. Then under P0

Z is a standard Brownian motion

N is a standard Poisson process (intensity = 1)

Z ,N,X are independent.
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Filtering in credit risk

Define Yt := Nt − t such that Y is a P0-martingale. Then ρt satisfies the Zakai
equation: for any f ∈ C 2

b (Rd), t ∈ [0,T ],

ρt(f ) = ρ0(f ) +

∫ t

0

ρs(L f )ds +

∫ t

0

ρs(f h>)dZs +

∫ t

0

ρs−
(
f (λ− 1)

)
dYs ,

P0 − a.s.
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Filtering in credit risk

To derive the Zakai equation we need the following assumptions:

(A1) Assume that the following three conditions hold:

1 b : Rd → Rd , σ : Rd → Rd×m, and h : Rd → Rl are bounded on Rd .
Moreover, b is C 1 with bounded derivatives and σ is C 2 with bounded first
and second order derivatives.

2 There exists α > 0, such that z>a(x)z ≥ αz>z , ∀x , z ∈ Rd .

3 λ : Rd → [$1, $2] is a continuous function for constants 0 < $1 < $2.
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Filtering in credit risk

An SPDE for the conditional density

Consider the separable Hilbert space H = L2(Rd) with scalar product (·, ·).

We are interested in a Lebesgue density, i.e. we look for some H-valued
process q such that

ρt(f ) = (qt , f )

for sufficiently many f .

From the Zakai equation,

(qt , f ) = (q0, f ) +

∫ t

0

(L ∗qs , f )ds +

∫ t

0

(h>qs , f )dZs +

∫ t

0

((λ− 1)qs−, f )dYs .

We extend the generator L ∗ and denote the extenden operator by A∗. Define
the multiplication-operators B : H → H l , Bf := fh> and C : H → H,
Cf := (λ− 1)f . We look for mild solution of the SPDE

dqt = A∗qtdt + BqtdZt + Cqt−dYt . (3)
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Filtering in credit risk

Theorem

Assume that (A1) holds. Then for all q0 ∈ V there is a unique mild solution q
of the SPDE (3). Moreover, qt ∈ H1(Rd) and for all f ∈ L2(Rd) we have that
ρt(f ) = (qt , f ).
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The Galerkin approximation

The Galerkin approximation

The Galerkin approximation for a (stochastic) PDE essentially projects the
equation to a finite-dimensional subspace. In the case of the Zakai equation the
projected equation can be characterized in terms of a finite-dimensional system
of ordinary stochastic differential equations.
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The Galerkin approximation

Let {e1, e2, . . .} ⊂ D(A∗) ∩ D(A) be a basis of the Hilbert-space H.

Hn is the linear subspace spanned by {e1, . . . , en} and by Pn we denote the
projection to Hn.

We define the projection of the operator A∗ by

(A∗)(n) := PnA∗Pn ;

and analogously B(n) and C(n).

Definition

The n-dimensional Galerkin approximation of (3) is the solution of

dq
(n)
t = (A∗)(n)q

(n)
t dt + B(n)q

(n)
t dZt + C(n)q

(n)
t−dYt ,

q
(n)
0 = Pnq0.

(4)
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The Galerkin approximation

We obtain that q
(n)
t can be written as

q
(n)
t (x) =

n∑
i=1

ψ
(n)
i (t)ei (x), t ∈ [0,T ], (5)

where ψ
(n)
i , 1 ≤ i ≤ n are called Fourier coefficients.

Define the n × n matrices A,C ,D and B`, ` = 1, . . . , l by their components:

aji := (ei ,Aej), b`ji := (ei , h
`ej), cji := (ei , (λ− 1)ej), dji := (ei , ej) . (6)

We obtain the following SDE system for the vector-valued process
Υ(n) := (ψ

(n)
1 , . . . ψ

(n)
n )>,

dΥ
(n)
t = D−1

(
AΥ

(n)
t dt +

l∑
`=1

B`Υ
(n)
t dZ `

t + CΥ
(n)
t−dYt

)
,

Υ
(n)
0 = D−1q

(n)
0 .

(7)

This SDE system will be the starting point for our numerical analysis.
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The Galerkin approximation

Convergence results

A∗ generates an analytic C0-semigroup G∗.

Then G∗t x is the solution of the Kolmogorov forward PDE with initial
condition x .

We have the following convergence result of the Galerkin approximation q(n) to
the solution of the Zakai equation q.

Theorem

Assume that (A1) holds. Let q be the solution of the Zakai equation in (3) and
q(n) be the corresponding Galerkin approximation. Then, for any q0 ∈ V ,

sup
t∈[0,T ]

E0(‖q(n)
t − qt‖2

H)→ 0, as n→∞,

if and only if, for any x ∈ H,

lim
n→∞

sup
t∈[0,T ]

∥∥∥( exp(PnA∗Pnt)− G∗t
)
x
∥∥∥
H

= 0. (8)
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Numerical solution of the Zakai equation

Numerical solution of the Zakai equation

In order to solve the SDE system numerically, we discretize in time.

We consider the Euler-Maruyama (EM) and the Splitting-Up (SU)
methods.

While the EM method is easier to implement it can be quite unstable if
the time step is large. This can be overcome by the SU method.

Rewriting Equation (7) leads to

dΥ
(n)
t = D−1

(
(A− C)Υ

(n)
t dt +

l∑
`=1

B`Υ
(n)
t dZt + CΥ

(n)
t−dNt

)
, Υ

(n)
0 = q

(n)
0 .

(9)
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Numerical solution of the Zakai equation

Algorithm (EM method)

For k = 1, . . . ,K, compute Υk from Υk−1 by

Υk = Υk−1

+ D−1
(

(A− C)Υk−1∆ +
l∑
`=1

B`Υk−1(Z `
tk − Z `

tk−1
) + CΥk−1(Ntk − Ntk−1 )

)
.

The splitting-up method (SU method) is a numerical method based on
semigroup theory.

Algorithm (SU method)

For k = 1, . . . ,K, compute Υk from Υk−1 by

(1) Compute Υ1
k := exp

(
(A− C)∆

)
Υk−1.

(2) Compute Υ2
k := exp

(∑l
`=1(B`(Ztk − Ztk−1 )− 1

2
(B`)2∆)

)
Υ1

k .

(3) Return Υk := (In + C)
(Ntk
−Ntk−1

)
Υ2

k
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Numerical results

Numerical results

The numerical experiments consider the following case.

Example (Kalman filter with point process observations)

Consider a one-dimensional example where

Xt = X0 +

∫ t

0

bXsds + σVt .

Furthmore,

Zt =

∫ t

0

hXsds + Wt

and N is a doubly stochastic Poisson process N with intensity

(λX 2
t )t≥0.

The coefficients of the Galerkin approximations can be obtained by direct
computation (see paper).
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Numerical results

The adaptive Galerkin approximation

During the filtering process the conditional distribution πt(dx) typically
changes location and scale which can create problems for the Galerkin
approximation with a fixed basis.

We propose an adaptive scheme, called adaptive Galerkin approximation
(AGA), which improves the numerical performance of the Galerkin
approach significantly.

Basically, if projected conditional mean or standard deviation deviate too
much over time, we adjust the basis to the current mean and standard
deviation.
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Numerical experiments

NG/NP 5/20 10/50 15/100

AGAH(EM) 0.63 (0.1s) 0.42 (0.1s) 0.42 (0.1s)
AGAH(SU) 0.65 (2.4s) 0.43 (3.1s) 0.43 (3.9s)
PF 0.46 (9s) 0.46 (22s) 0.42 (46s)

Performance comparison for different filter algorithms

We plot the RMSE and the computation time for two Galerkin filters and
a particle filter (PF).

The parameter values h = λ = 0.1 used in the experiment correspond to a
relatively uninformative observation filtration.
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Numerical experiments
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Comparison of Galerkin and particle filtering methods.
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Numerical experiments
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Value of point process information

We plot the conditional standard deviation σ̂t for the case with only
continuous observation λ = 0 and with continuous and point process
observations (λ = 10, lower trajectory).

Clearly, including point process information reduces the conditional
standard deviation significantly.
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Numerical experiments
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The adaptive Galerkin approximation for different numbers of basis functions.
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Numerical experiments
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The corresponding conditional variance can be a useful tool of determing the
appropriate number of basis functions.
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Numerical experiments

Many thanks for your attention!
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