Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

MB - Leipzig University, JZ - Polish Academy of Sciences

April 2013, Vienna

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate mode

JMM equation

SPDE - existence and positivity

equation

Local existence

• Global existence

• Local existence

Global existence

Outline

- Arbitrage free modelling of the bond market
- Michał Barski, Jerzy Zabczyk

- Local existence
- Global existence
- Local existence
- Global existence

- Bond market introduction
- Forward rate model
- HJMM equation
- SPDE existence and positivity
- General HJMM equation
 - a) Local existence
 - b) Global existence
- Linear HJMM equation
 - a) Local existence
 - b) Global existence

Bond market - introduction

A **bond** is a financial contract paying 1 EUR at date T > 0.

T - maturity of the bond; known at time 0; P(t, T) - the value of the bond with maturity T at time t;

- $P(\cdot, T)$ some stochastic process on [0, T] with P(T, T) = 1; T > 0,
- $P(t, \cdot)$ a function describing the bond prices at time t;

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market - introduction

Forward rate mode

JMM equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

icai i ioiviivi cquai

- Local existence
- Global existence

The value at time t of 1 EUR paid at time T:

$$e^{-\int_t^T r(s)ds} \longleftarrow$$
 1 at time T ;

Model of the bond prices:

$$P(t,T) := e^{-\int_t^T f(t,u)du},$$

$$f(\cdot, \cdot) = f(\omega, \cdot, \cdot)$$
 - forward rate,

Difference: For t < T

- r(T) is not known at time t;
- f(t, T) is known at time t.

Bond market introduction

Forward rate model

IJMM equation

SPDE - existence and positivity

equation

Local existence

Global existence

Local existence

Global existence

The forward rate f:

- fully determines the bond prices.
- determines the short rate process by: r(t) := f(t, t),
- specifies other random quantities on the market, for instance the semiannual LIBOR rate:

$$1 + 0, 5 \cdot LIBOR(t, x) = e^{\int_{x}^{x+0.5} f(t, t+u)du}$$
.

f can be treated as

- $f(\cdot, T)$ a stochastic process --- a traditional approach.
- $f(t, \cdot)$ as an element of some Hilbert space \longrightarrow the *SPDE* approach,
- \bullet $(t, T) \longrightarrow f(t, T)$ as a random function --- a random field approach.

The forward rate dynamics

$$df(t,T) = \alpha(t,T)dt + \sigma(t,T)dL(t), \qquad 0 < t \le T < +\infty,$$

$$f(0,T) = f_0(T)$$

where L is a general Lévy process. For L - Wiener process, see (\diamondsuit).

Question: When the market is arbitrage-free? When the discounted bond prices

$$\hat{P}(t,T) = e^{-\int_0^T f(t,u)du}, \qquad 0 < t \le T$$

are local martingales?

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate model

viivi equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

- Local existence
- Global existence

^(♦) Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation, Econometrica **60**, 77-105 (1992)

Heath-Jarrow-Morton condition (HJM)

The bond market is arbitrage-free if and only if

$$(\diamondsuit) \quad \int_{t}^{T} \alpha(t, u) du = J\left(\int_{t}^{T} \sigma(t, u) du\right), \qquad (\textit{HJM}-\textit{condition})$$

where J is a Laplace exponent of L:

$$\mathbf{E}(e^{-zL(t)})=e^{tJ(z)}, \qquad t\geq 0, \ z\in \mathbb{R}.$$

By taking the *T*-derivatives we obtain:

$$\alpha(t,T) = J'\Big(\int_t^T \sigma(t,u)du\Big)\sigma(t,T).$$

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate model

ilviivi equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

- Local existence
- Global existence

^{(\$\}sqrt{\$}\) Eberlein, E., Raible, S.:"Term structure models driven by general Lévy processes", (1999), *Math. Finance*, 9, 31-53.

^(♦) Jakubowski, J., J. Zabczyk: "Exponential moments for HJM models with jumps", (2007), Finance and Stochastics, 11, 429-445.

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Forward rate model

- Local existence
- Global existence

- Local existence
- Global existence

Forward rate dynamics:

$df(t,T) = J'\left(\int_{t}^{T} \sigma(t,u)du\right)\sigma(t,T)dt + \sigma(t,T)dL(t) \ (*)$

Remark: The bond market model is specified by

 $f(0,T) = f_0(T).$

- \bullet $J'(\cdot)$.
- \bullet $\sigma(\cdot, \cdot)$.

If $\sigma = \sigma(f)$ then (*) becomes an equation.

Problem: Does the HJM equation have a solution?

Musiela paramterization \longrightarrow use x := T - t (time to maturity) instead of T;

$$r(t, x) := f(t, t + x), \quad x \ge 0,$$

$$F(t, x) := \alpha(t, t + x), \quad G(t, x) := \sigma(t, t + x),$$

$$r(0, x) := r_0(x) = f_0(x) = f(0, x), \quad x > 0.$$

Then all functions $r(t,\cdot)$ have the same domain $[0,+\infty)\longrightarrow r$ may be treated as a Hilbert space valued process.

The dynamics of r:

$$r(t,x) = f(t,t+x) = f(0,t+x) + \int_0^t \alpha(s,t+x)ds + \int_0^t \sigma(s,t+x)dL_s$$

= $r(0,x) + \int_0^t F(s,t-s+x)ds + \int_0^t G(s,t-s+x)dL_s$.

 \longrightarrow r is a weak solution of the SPDE;

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate model

HJMM equation

SPDE - existence and positivity

General HJ

Local existence

Global existence

inear HJMM equal

- Local existence
- Global existence

HJMM equation

SPDE - existence and positivity

equation

Local existence

Global existence

. . . .

Local existence

Global existence

Then the (HJM) equation transforms to the (HJMM) equation:

$$f(t,T) = f_0(T) + \int_0^t \alpha(s,T) \, ds + \int_0^t \sigma(s,T) dL(s) \qquad (\textit{HJM equation})$$

$$\updownarrow$$

$$dr(t,x) = \left\lceil \frac{\partial r}{\partial x}(t,x) + F(t,x) \right\rceil dt + G(t,x) dL(t) \qquad (\textit{HJMM equation})$$

Weak solution of the HJMM equation

$$r(t, x) = S_t r_0(x) + \int_0^t [S_{t-s} F(s, x)] ds + \int_0^t S_{t-s} G(s, x)] dL(s)$$

Shift semigroup:

$$S_t h(x) = h(t+x), \quad t \geq 0, x \geq 0.$$

HJMM equation

- Local existence
- Global existence

- Local existence
- Global existence

Conclusion: The HJMM equation is an SPDE of the form

$$dr(t,x) = (Ar(t,x) + F(r(t))(x))dt + G(r(t))(x)dL(t)$$

where

$$Ah(x) = \frac{d}{dx}h(x),$$

$$F(h)(x) = J'\left(\int_{-x}^{x} G(h)(v)dv\right)G(h)(x)$$

State spaces

12, γ

$$||h||_{L^{2,\gamma}}^{2} := \int_{0}^{+\infty} |h(x)|^{2} e^{\gamma x} dx < +\infty,$$

H^{1,γ}

$$\|h\|_{H^{1,\gamma}}^2 := \int_0^{+\infty} \left(|h(x)|^2 + |h'(x)|^2 \right) e^{\gamma x} dx < +\infty,$$

where $\gamma > 0$.

HJMM equation

SPDE - existence and positivity

equation

Local existence
 Global existence

Linear H IMM cour

Local existence

Global existence

The HJMM equation is specified by J' and $G: H \longrightarrow H$ where $G(h)(x) = g(x, h(x)), \quad \text{GENERAL CASE}$

where $g: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}_+$.

$$g(x, r) = \lambda(x)r$$
, LINEAR CASE,

 $\lambda(\cdot)$ deterministic function.

Problem: Does the HJMM equation have solutions?

Aim: Formulate conditions on g and J' such that

- there exists solution to the HJMM eq.
- the solution is positive.

EXISTENCE

(♦) Theorem (Peszat, Zabczyk)

$$dX = (AX + F(X)) dt + G(X -) dL(t)$$

linear growth

$$|| F(x) ||_H + || G(x) ||_H \le c(1 + || x ||_H)$$

Lipschitz condition

$$|| F(x) - F(y) ||_H + || G(x) - G(y) ||_H < c(|| x - y ||_H)$$

local Lipschitz condition

$$\forall R > 0 \; \exists c_R > 0 \; \text{such that} \; \forall x, y \in H, \parallel x \parallel_H, \parallel y \parallel_H \leq R$$

$$|| F(x) - F(y) ||_H + || G(x) - G(y) ||_H \le c_R(|| x - y ||_H)$$

Then

- Innear growth + Lipschitz condition ⇒ ∃! weak solution;
- Innear growth + local Lipschitz condition ⇒ ∃! weak solution.

Arbitrage free modelling of the bond

Michał Barski, Jerzy Zabczyk

introduction

orward rate model

JMM equation

SPDE - existence and positivity

equation

Local existence

Global existence

Local existence

Global existence

 $[\]left(\diamondsuit\right)$ Peszat, Sz., Zabczyk J.: "Stochastic partial differential equations with Lévy noise",(2007), Cambridge University Press

POSITIVITY

(♦) Theorem [Milian]

- semigroup S_t preserves positivity,
- F. G Lipschitz transformations

Then the equation

$$dX = (AX + F(X)) dt + G(X)dW(t),$$

W – real Wiener process, $H = L^2$.

preserves positivity if and only if

$$\forall \varphi \geq 0 \quad \text{and} \quad \phi \geq 0 \quad \text{s.t.} \langle \varphi, \phi \rangle = 0 \quad \Longrightarrow \quad \langle F(\varphi), \phi \rangle \geq 0, \ \langle G(\varphi), \phi \rangle = 0.$$

Generalization

- L Lévy process.
- F, G locally Lipschitz transformations,
- \longrightarrow Consider L without small jumps and formulate conditions on positivity at the jump moments. Then pass to the limit.

Arbitrage free modelling of the bond

Michał Barski, Jerzy Zabczyk

Bond market ntroduction

Forward rate model

JMM equation

SPDE - existence and positivity

equation

Local existence

Global existence

- Local existence
- Global existence

⁽ \diamondsuit) Millian, A. : "Comparison theorems for stochastic evolution equation", (2002), *Stochastics and Stochastics Reports*, 72, 79-108.

(1)

(2)

- Local existence
- Global existence

Lilicai i ibiviivi equatio

- Local existence
- Global existence

Theorem

Assume that F, G are locally Lipschitz in $L^{2,\gamma}$.

i) Then the HJMM equation is positivity preserving if and only if

$$r+g(x,r)u\geq 0$$

$$r > 0$$
, $x > 0$, $u \in \text{supp } \nu$.

$$g(x,0) = 0 \qquad x > 0$$

ii) If
$$supp\{\nu\} \subseteq [-m, +\infty)$$
 and $g \ge 0$ then (1) holds iff $g(x, r) \le r/m$.

iii) If
$$g(x, r) = \lambda(x)r$$
 where $\bar{\lambda} := \sup_{x>0} \lambda(x)$ then (1) holds iff

$$supp\{
u\}\subseteq [-rac{1}{ar{\lambda}},+\infty).$$

- Local existence
- Global existence

- Local existence
- Global existence

Michał Barski, Jerzy

- $(G1) \left\{ \begin{array}{l} (\textit{i}) \quad \text{The function g is continuous on } \mathbb{R}^2_+ \text{ and} \\ g(x,0) = 0, \ g(x,y) \geq 0, \quad x,y \geq 0. \\ \\ (\textit{ii}) \quad \text{For all } x,y \geq 0 \text{ and } u \in \operatorname{supp} \nu: \\ x + g(x,y)u \geq 0. \\ \\ (\textit{iii}) \quad \text{There exists a constant } C > 0 \text{ such that} \\ \mid g(x,u) g(x,v) \mid \leq C \mid u v \mid, \quad x,u,v \geq 0. \end{array} \right.$

Theorem [loc. ex. in $L^{2,\gamma}$]

Assume that (G1) holds and either L is a Wiener process or for some $z_0 > 0$:

$$(*) \quad \int_{-\infty}^{-1} \mid y \mid^2 e^{z_0 \mid y \mid} \nu(\textit{d} y) < +\infty, \quad \textit{and} \quad \int_{1}^{+\infty} y^2 \nu(\textit{d} y) < +\infty.$$

Then for arbitrary initial condition $r_0 \in L^{2,\gamma}_+$ there exists a unique local solution to the HJMM eq. in $L^{2,\gamma}$.

 $(*) \iff J'$ is locally Lipschitz

$$(G2) \quad \left\{ \begin{array}{ll} (\textit{i}) & \text{The functions } g_x', g_y' \text{ are continuous on } \mathbb{R}_+^2 \text{ and} \\ g_x'(x,0) = 0, \quad x \geq 0. \\ \\ (\textit{ii}) & \sup_{x,y \geq 0} \mid g_y'(x,y) \mid < +\infty, \\ \\ (\textit{iii}) & \text{There exists a constant } C > 0 \text{ such that for,} \quad x,u,v \geq 0 \\ & \mid g_x'(x,u) - g_x'(x,v) \mid + \mid g_y'(x,u) - g_y'(x,v) \mid \leq C \mid u-v \mid . \end{array} \right.$$

(G2)
$$\left\{ \begin{array}{cc} (ii) & \sup_{x,y\geq 0} \mid g'_y(x,y) \mid <+\infty, \end{array} \right.$$

Theorem [loc. ex. in $H^{1,\gamma}$]

Assume that (G1) and (G2) hold and for some $z_0 > 0$

$$(*) \qquad \int_{-\infty}^{-1}\mid y\mid^3 e^{z_0|y|}\nu(\mathrm{d}y)<+\infty, \quad \text{and} \quad \int_1^{+\infty}y^3\nu(\mathrm{d}y)<+\infty.$$

Then for arbitrary initial condition $r_0 \in H^{1,\,\gamma}_+$ there exists a unique local solution to HJMM ea. in $H_{\perp}^{1,\gamma}$.

 $(*) \iff J', J''$ are locally Lipschitz

Conclusion: If

- L is a Wiener process or
- L has small jumps only

then there exists a local solution.

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

- Local existence
- Global existence

Local existence

Global existence

MM equation

SPDE - existence and positivity

equation

Local existence

Global existence

inear Hulvilvi equatio

Local existence

Global existence

4 m >

Theorem [glob. ex. in $L^{2,\gamma}_{\perp}$]

Assume that (G1) holds and in addition:

$$(*) \quad q=0, \quad \operatorname{supp}\{\nu\}\subseteq [0,+\infty), \quad \int_0^{+\infty} \max\{y,y^2\}\nu(\operatorname{d}\! y)<+\infty.$$

Then for arbitrary $r_0 \in L^{2,\gamma}_+$ the HJMM eq. has unique global solution in $L^{2,\gamma}_+$.

 $(*) \iff J'$ is locally Lipschitz and bounded on $[0, +\infty)$

Michał Barski, Jerzy Zabczyk

- Local existence Global existence

Local existence

- Global existence

 $(G3) \quad \left\{ \begin{array}{ll} & (\textit{i}) \quad \text{Partial derivatives } g'_y, g''_{xy}, g''_{yy} \text{ are bounded on } \mathbb{R}^2_+. \\ \\ & (\textit{ii}) \quad 0 \leq g(x,y) \leq c\sqrt{y}, \qquad x,y \geq 0, \\ \\ & (\textit{iii}) \quad \mid g'_x(x,y) \mid \leq h(x), \qquad x,y \geq 0, \text{ for some } h \in L^{2,\gamma}_+. \end{array} \right.$

Theorem [gl. ex. in $H^{1,\gamma}_{\perp}$]

Assume that conditions (G1), (G2) and (G3) are satisfied and

$$(*) \quad q=0, \quad \operatorname{supp}\{\nu\}\subseteq [0,+\infty), \quad \int_0^{+\infty} \max\{y,y^3\}\nu(\mathrm{d}y)<+\infty.$$

Then for arbitrary $r_0 \in H^{1,\gamma}_+$ there exists a unique global solution to the HJMM eq. in $H^{1,\gamma}_+$.

 $(*) \iff J', J''$ are locally Lipschitz and bounded on $[0, +\infty)$

Conclusion: The standard SPDE methods exclude from the analysis all Lévy processes which

- have Wiener part.
- have negative jumps.

$$g(x,r) = \lambda(x)r, \quad x,r \geq 0,$$

 $\lambda(\cdot)$ - continuous function,

$$\underline{\lambda} := \inf_{x \ge 0} \lambda(x), \qquad \overline{\lambda} := \sup_{x > 0} \lambda(x).$$

Assumptions on positivity reduce to:

$$(\Lambda 0) \begin{cases} (i) & \underline{\lambda} > 0, \\ (ii) & \text{supp } \nu \subseteq [-\frac{1}{\lambda}, +\infty), \\ (iii) & \overline{\lambda} < +\infty. \end{cases}$$

introduction

Forward rate model

JMM equation

SPDE - existence and positivity

equation

Local existence

• Global existence

Local existence

Global existence

Local existence

Global existence

Local existence

Global existence

From the general case the following results can be deduced.

Theorem [loc. ex. in $L^{2,\gamma}_{\perp}$]

Assume that (A0) and

$$\int_1^{+\infty} y^2 \nu(dy) < +\infty,$$

hold. Then there exists a unique local weak solution to the HJMM eq. taking values in the space $L^{2,\gamma}_{\perp}$.

Theorem [loc. ex. in $H^{1,\gamma}_{\perp}$]

Assume that conditions (Λ 0).

 λ' is bounded and continuous on \mathbb{R}_+ .

and

$$\int_1^{+\infty} y^3 \nu(dy) < +\infty,$$

are satisfied. Then there exists a unique local weak solution to the HJMM eq. taking values in the space $H^{1,\gamma}_{\perp}$.

Global existence

modelling of the bond market Michał Barski, Jerzy Zabczyk

Arbitrage free

Local existence

Global existence

Local existence

Global existence

4 日 5 4 間 5 4 章 5 4 章 5 章 章

Remark: Linear case is not captured by the general case \longrightarrow F does not satisfy linear growth condition.

Proposition

If F satisfies the linear growth condition in $L^{2,\gamma}$ then J' is bounded on $[0,+\infty)$.

Remark: J' is bounded \iff L is a subordinator:

---- the standard SPDE methods capture only models driven by the subordinators;

We treat the forward rate f as a **bounded random field on a bounded domain** \mathcal{T} :

$$\mathcal{T} := \left\{ (t, T) \in \mathbb{R}^2 : 0 \le t \le T \le T^* \right\}.$$

which satisfies

- $f(\cdot, T)$ is adapted and càdlàg on [0, T] for all $T \in [0, T^*]$,
- $f(t, \cdot)$ is continuous on $[t, T^*]$ for all $t \in [0, T^*]$,
- $P(\sup_{(t,T)\in\mathcal{T}} f(t,T) < \infty) = 1.$

The growth conditions for J':

$$\bullet \ \ \limsup_{z \to \infty} \ \left(\ \ln z - \bar{\lambda} \, T^* J' \Big(z \Big) \right) = + \infty, \qquad 0 < T^* < + \infty, \qquad (L1)$$

Theorem (♦)

- $\overline{a)}$ (L1) \Longrightarrow there exists a bounded field solving the linear equation.
- b) $(L2) \implies$ there is no bounded field solving the linear equation.

Arbitrage free modelling of the bond

Michał Barski, Jerzy Zabczyk

ntroduction

Forward rate model

JMM equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

.....

- Local existence
- Global existence

^(♦) Barski M., Zabczyk J.: "Forward rate models with linear volatilities", (2012) Finance and Stochastics 16, 3, p. 537-560.

Operator equation:

$$r(t, x) = \mathcal{K}(r)(t, x), \quad r(\cdot, \cdot)$$
 - random field,

where

$$\mathcal{K}h(t,x) = a(t,x)e^{\int_0^t J'(\int_0^{t-s+x} \lambda(v)h(s,v)dv)\lambda(t-s+x)ds}, \quad x > 0, \quad t \in (0,T^*].$$

and

$$\begin{aligned} a(t,x) := & r_0(t+x)e^{\int_0^t \lambda(t-s+x)dL(s) - \frac{q^2}{2} \int_0^t \lambda^2(t-s+x)ds} \\ & \cdot \prod_{0 \le s \le t} (1 + \lambda(t-s+x)\triangle L(s)) \, e^{-\lambda(t-s+x)\triangle L(s)}. \end{aligned}$$

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate model

MM equation

SPDE - existence and positivity

equation

- Local existence
- Global existence
 - ineai maiviivi equatio
- Local existence
- Global existence

Proposition

Under some mild assumptions:

- r takes values in $L^{2,\gamma}$ and solves operator equation $\implies r$ solves HJMM in $L^{2,\gamma}$,
- r takes values in $H^{1,\gamma}$ and solves operator equation \iff r solves HJMM in $H^{1,\gamma}$.

For the proof we need regularity of the random fields

$$\begin{split} I_1(t,x) &:= \int_0^t \lambda(t-s+x) dL(s), \quad t \in [0,T^*], \ x \geq 0, \\ I_2(t,x) &:= \prod_{0 \leq s \leq t} (1+\lambda(t-s+x) \triangle L(s)) \, e^{-\lambda(t-s+x) \triangle L(s)}, \qquad t \in [0,T^*], x \geq 0, \end{split}$$

Proposition

- If $\lambda(\cdot)$ is bounded and continuous then $I_1(\cdot, \cdot)$ is bounded and $I_1(\cdot, x)$ is càdlàg.
- If $\lambda(\cdot)$, $\lambda'(\cdot)$ are bounded and continuous then $l_2(\cdot,\cdot)$ is bounded and $l_2(\cdot,x)$ is càdlàg.

Arbitrage free modelling of the bond

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate mode

MM equation

SPDE - existence and positivity

equation

Local existence

Global existence

Local existence

• Global existence

$$\bullet \ \ \limsup_{z \to \infty} \ \left(\ \ln z - \bar{\lambda} \, T^* J' \Big(z \Big) \right) = + \infty, \qquad 0 < T^* < + \infty, \qquad (L1)$$

• $J'(z) \ge a(\ln z)^3 + b$, $\forall z > 0$, for some a > 0, $b \in \mathbb{R}$ (L2).

Theorem [non-existence in $H^{1,\gamma}_{\perp}$]

Assume that conditions (A0).

- \bullet $\lambda, \lambda', \lambda''$, are bounded and continuous on \mathbb{R}_+ ,
- (L2)

are satisfied.

Then, for some k > 0 and all $r_0(\cdot) \in H_+^{1,\gamma}$ such that $r_0(x) \ge k$, $\forall x \in [0, T^*]$, the global solution in $H_+^{1,\gamma}$ of HJMM eq. does not exist on the interval $[0, T^*]$.

Corollary: Each local solution in $H^{1,\gamma}_{\perp}$ explodes under (*L*2).

introduction

orward rate mode

/IM equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

.

- Local existence
- Global existence

- λ . λ' are bounded and continuous on \mathbb{R}_+ ,
- $\int_{1}^{+\infty} y \nu(dy) < +\infty,$
- $\limsup_{z \to \infty} \ \left(\ln z \bar{\lambda} T^* J'(z) \right) = +\infty, \qquad 0 < T^* < +\infty,$

hold

- (a) If $r_0 \in L^{2,\gamma}$ then there exists a solution to the HJMM eq. taking values in the space
- (b) Assume, in addition, that
 - λ'' is bounded and continuous on \mathbb{R}_+ ,
 - $supp\{\nu\}\subseteq [0,+\infty)$ and $\int_1^\infty y^2\nu(dy)<\infty$.

If $r_0 \in H^{1,\gamma}_+$ then there exists a solution to the HJMM eq. taking values in the space $H^{1,\gamma}_+$.

- Local existence
- Global existence

- Local existence
- Global existence

Theorem [UNIQUENESS]

Assume that

$$supp\{\nu\}\subseteq (0,+\infty)$$
 and $\int_{1}^{\infty}y^{2}\nu(dy)<\infty$,

is satisfied. If, on the interval $[0, T^*]$, there exists a non-exploding solution of the HJMM eq. taking values in $L^2_+\gamma$ then it is unique.

<u>Comment:</u> Our assumptions for existence are weak. They do not even imply local Lipschitz conditions.

Corollary:

- L has the Wiener part \rightarrow no solutions,
- L has negative jumps → no solutions.
- L is a subordinator with drift → there are solutions.

Arbitrage free modelling of the bond

Michał Barski, Jerzy Zabczyk

introduction

Forward rate model

/livi equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

inear ribiviivi equatic

- Local existence
- Global existence

JMM equation

SPDE - existence and positivity

equation

- Local existence
- Global existence

- Local existence
- Global existence

Characteristics of the noise and existence modellin

In general the answer depends on the behavior of the function

$$U_{\nu}(x):=\int_0^x y^2\nu(dy), \qquad x\geq 0,$$

near the origin.

A positive function L varies slowly at 0 if for any fixed x > 0

$$\frac{L(tx)}{L(t)} \longrightarrow 1$$
, as $t \longrightarrow 0$.

Typical examples:

$$L(t) \equiv const., \quad L(t) = \left(\ln \frac{1}{t}\right)^{\gamma}, \gamma > 0 \text{ for small positive } t.$$

- Local existence
- Global existence

- Local existence
- Global existence

modelling of the bond

Theorem

Assume that for some $\rho \in (0, +\infty)$,

$$U_{\nu}(x) \sim x^{\rho} \cdot L(x), \quad \text{as } x \to 0,$$

where L is a slowly varying function at 0.

- i) If $\rho > 1$ then there exists a solution.
- ii) If ρ < 1, then there is no solution.
- iii) If $\rho = 1$, the measure ν has a density and

$$L(x) \longrightarrow 0$$
 as $x \to 0$, and $\int_0^1 \frac{L(x)}{x} dx = +\infty$,

then there exists a solution

Arbitrage free modelling of the bond market

Michał Barski, Jerzy Zabczyk

Bond market introduction

Forward rate mode

JMM equation

SPDE - existence and positivity

equation

Local existence

Global existence

icai i ioiviivi equa

• Local existence

Global existence

THANK YOU FOR ATTENTION :-)