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Goal of talk

Develop an approximation scheme for computing the value function of
entropy-weighted stochastic control problems.

We do this by treating the control as a small perturbation to the path of the
state variable on Wiener space. This uses ideas related to the stochastic
calculus of variations.

We do not require the state process to be Markovian, and the terminal payoff
is a general (hence path-dependent) functional of the paths of the state
variable.
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Entropy weighted stochastic control problem

The type of stochastic control problem we analyse typically arises in the dual
approach to exponential indifference valuation of claims.

The problem is an optimisation over equivalent local martingale measures
(ELMMs) Q and maximises an expectation of a random payoff, penalised by
an entropy term. For example, the indifference price at time zero of a claim
with FT -measurable payoff F is

p0 = sup
Q∈Mf

[
EQ[F ]− 1

α
I0(Q|Q0)

]
, (1.1)

where α > 0 is the risk aversion coefficient, Q0 is the minimal entropy
martingale measure (MEMM) and I0(Q|Q0) is the relative entropy between
any ELMM Q ∈Mf and Q0.
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Itô process example

In an Itô process setting, and with ε2 = α, use of the Girsanov theorem
renders the optimisation over measures in (1.1) to a problem in which the
control is a drift perturbation to a (multi-dimensional) Brownian motion:

p := sup
ϕ∈A(Mf )

E

[
F (X (ε))− 1

2

∫ T

0

‖ϕt‖2 dt

]
,

where the state variable X (ε) is a perturbed process following

dX
(ε)
t = at dt + bt(dWt + εϕt dt),

with ε = 0 corresponding to the dynamics under the MEMM Q0, F (X (ε)) is a
functional of the paths of X (ε), and a, b are adapted processes.

Note: we fix the measure and consider a family {X (ε)}ε∈R of perturbed
processes, as opposed to considering a fixed process under a family
{Q(ε)}ε∈R of measures. This is for transparency and tractability.
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Perturbations on Wiener space I

For small ε, view the drift εϕ as a perturbation to the Brownian paths on
Wiener space. For ε = 0 the optimal control is zero, and we suppose that the
optimal control for small ε will be a perturbation around zero.

Then Malliavin calculus ideas arise in deriving an asymptotic expansion for
the value function, valid for small ε. The power of this approach is that we
can obtain results in non-Markovian models and for quite general
path-dependent payoffs.

We will differentiate the objective function of the control problem with
respect to ε at ε = 0, and ultimately obtain an approximation of the value
function for small ε.

This uses Bismut’s (1981) approach to the Malliavin calculus, which exploits
the Girsanov theorem to translate a drift adjustment into to a measure
change, in order to perform differentiation on path space.
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Perturbations on Wiener space II

Related work by Boué and Dupuis (1998) treats entropy-weighted control
problems using similar variational principles on paths space, obtaining
formulae of the form

− logE[e−f (W )] = inf
v
E

[
1

2

∫ T

0

‖vs‖2 ds + f

(
W +

∫ ·
0

vs ds

)]
.

Bierkens and Kappen (2012) develop this further and obtain formulae for the
optimal control as a Malliavin derivative of f (W ). Future work could seek to
relate our results to these.

We will not require our functional F to be Malliavin-differentiable, and will
comment on what happens if it is.

The idea of using Bismut’s approach for asymptotics of stochastic control
problems in finance is due to Davis (2006), for indifference pricing in a
two-dimensional lognormal basis risk model, and for a path-independent
claim.
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Perturbations on Wiener space III

Davis’ method was neglected subsequently, as PDE methods (Zariphopoulou
(2001), Henderson (2002), Monoyios (2004)) gave a closed-form nonlinear
expectation representation for the indifference price, to which asymptotic
analysis was easily applicable.

Here, we resurrect Davis’ idea, and show it can work in multi-dimensional Itô
markets, with no Markov assumption, and for payoffs which are quite general
path-dependent functionals.

For exponential indifference valuation, BSDE and/or BMO techniques can
also yield risk-aversion asymptotics (Becherer (2003), Mania and Schweizer
(2005), Kallsen and Rheinländer (2011)). The salient point in this talk is the
methodology, applied to a generic entropy-weighted control problem.
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Directional derivative on Wiener space

Take a canonical basis (Ω,F ,F := (Ft)0≤t≤T ,P).

Ω = C0([0,T ];Rm), continuous functions ω : [0,T ]→ Rm, with ω(0) = 0.

P is Wiener measure.

{Wt(ω) := ω(t)}t∈[0,T ] is m-dimensional Brownian motion.

Given a functional F (W ) of the Brownian paths, an FT -measurable map
F : Ω→ R satisfying E[F 2(W )] <∞, we would like to define a directional
derivative in the direction Φ ∈ Ω, with Φ :=

∫ ·
0
ϕs ds:

d

dε
[F (W + εΦ)]|ε=0 := lim

ε→0

1

ε
[F (W + εΦ)− F (W )],

where one needs to make precise sense of the limit (we will do so in L2).

We will need the following condition on F : there exists a constant K such
that for Φ ∈ Ω, and with ‖ · ‖∞ denoting the supremum norm
‖ω(t)‖∞ := supt∈[0,T ] ‖ω(t)‖,

|F (W + Φ)− F (W )| ≤ K‖Φ‖∞. (2.1)
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Lemma (Directional derivative on Wiener space)

Let F ≡ F (W ) be a square-integrable functional of the Brownian paths W on the
Banach space Ω = C0([0,T ];Rm).
Let ϕ be a bounded previsible process, with Φ ∈ Ω defined by Φ :=

∫ ·
0
ϕs ds.

Then the map ε→ E[F (W + εΦ)] is differentiable, with derivative

d

dε
E[F (W + εΦ)]|ε=0 = E [F (W )(ϕ ·W )T ] .

Here, (ϕ ·W ) denotes the stochastic integral

m∑
i=1

∫ T

0

ϕi
t dW i

t ≡
∫ T

0

ϕt · dWt ≡ (ϕ ·W )T .

We do not need ϕ to be bounded, this is only for simplicity. We rely only on
(ϕ ·W ) and E(−εϕ ·W ) being martingales.
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Relation to Malliavin derivative

On the Hilbert space H = L2([0,T ];Rm), for ϕ ∈ H, the Cameron-Martin
subspace CM ⊂ Ω = C0([0,T ];Rm) consists of functions Φ : [0,T ]→ Rm

with square-integrable derivative ϕ:

Φt :=

∫ t

0

ϕs ds,

∫ t

0

‖ϕs‖2 ds <∞, 0 ≤ t ≤ T .

If F is Malliavin-differentiable and Φ ∈ CM, the integration-by-parts formula
is

E

[∫ T

0

DtF · ϕt dt

]
= E

[
F

∫ T

0

ϕt · dWt

]
.

So in this case the directional derivative also takes on the form above. But
the directional derivative lemma is valid when F is not necessarily

Malliavin-differentiable and for previsible ϕ such that E
[∫ T

0
‖ϕt‖2 dt

]
<∞.
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Proof of Directional Derivative Lemma I

For ϕ bounded, previsible, and ε ∈ R, define the exponential martingale

M
(ε)
t := E(−εϕ ·W )t

:= exp

(
−ε
∫ t

0

ϕ · dWs −
1

2
ε2

∫ t

0

‖ϕs‖2 ds

)
, 0 ≤ t ≤ T ,

and the probaility measure P(ε) by dP(ε) = M
(ε)
T dP.

By Girsanov, W (ε) := W + εΦ is Brownian motion under P(ε), so that

E[F (W )] = E(ε) [F (W + εΦ)] = E[M
(ε)
T F (W + εΦ)]. (2.2)

This invarance principle underlies Bismut’s approach to the Malliavin calculus.
Re-write (2.2) as

E
[

1

ε
(F (W + εΦ)− F (W ))

]
+ E

[
1

ε
(M

(ε)
T − 1)F (W )

]
+ E

[
1

ε
(F (W + εΦ)− F (W ))(M

(ε)
T − 1)

]
= 0. (2.3)

Michael Monoyios (University of Oxford) Malliavin asymptotic expansions Vienna, Apr 2013 12 / 39



Proof of Directional Derivative Lemma II
Differentiate E[F (W + εΦ)] with respect to ε at ε = 0 by considering what
happens when we let ε→ 0 in (2.3). The last term is bounded by

K‖Φ‖∞E[|M(ε)
T − 1|], so tends to zero. Neglecting this term, we compute, using

the square-integrability of F and the Cauchy-Schwarz inequality,(
E
[

1

ε
(F (W + εΦ)− F (W ))

]
− E[F (W )(ϕ ·W )T ]

)2

=

(
E
[(

1

ε
(M

(ε)
T − 1) + (ϕ ·W )T

)
F (W )

])2

≤ CE

[(
1

ε
(M

(ε)
T − 1) + (ϕ ·W )T

)2
]
,

which converges to zero as ε→ 0, using the well-known result that

1

ε
(M

(ε)
T − 1)→ −(ϕ ·W )T , in L2, as ε→ 0. (2.4)

�
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Remarks I

If we place more structure on F we can illustrate the relation with the
Malliavin derivative. Make the following assumption:

Suppose there exists a kernel ∂F (ω; ·) ≡ ∂F (W ; ·) : Ω→M, where M is the
set of m-dimensional finite Borel measures on [0,T ], such that for Φ ∈ Ω, we
have a directional derivative operator DΦ satisfying

DΦF (W ) := lim
ε→0

1

ε
(F (W + εΦ)− F (W )) =

∫ T

0

Φt · ∂F (W ; dt). (2.5)

This condition is automatically satisfied if F is Fréchet differentiable, for in
that case we have

F (W + εΦ)− F (W ) = ε

∫ T

0

Φt · F ′(W ; dt) + o(|ε||Φ‖∞),

where the Fréchet derivative F ′(W ; ·) is a bounded linear functional on Ω,
that is, a measure (and hence an element of the dual space Ω∗). So in this
case ∂F ≡ F ′. But there are functionals where differentiablity fails but (2.5)
holds (see Rogers and Williams).
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Remarks II
If Φ =

∫ ·
0
ϕs ds, then letting ε→ 0 in (2.3) as before, we get

E

[∫ T

0

Φt · ∂F (W ; dt)

]
= E

[
F (W )

∫ T

0

ϕt · dWt

]
,

that is

E

[∫ T

0

∂F (W ; (t,T ]) · ϕt dt

]
= E

[
F (W )

∫ T

0

ϕt · dWt

]
. (2.6)

If F is Malliavin-differentiable, and Φ ∈ CM ⊂ Ω, then the directional
derivative DΦF exists in L2(P) and is related to DF via

DΦF (W ) =

∫ T

0

DtF (W ) · ϕt dt,

so in this case we have

∂F (W ; (t,T ]) = DtF (W ), t ∈ [0,T ].

and (2.6) is the integration-by-parts formula.
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Remainder term

Denoting ‖ϕ‖2
2 :=

∫ T

0
‖ϕt‖2 dt, the Directional Derivative Lemma implies that

E[F (W + εΦ)− F (W )− εF (W )(ϕ ·W )T ] ∼ O(ε2‖ϕ‖2
2).

So in particular, if ϕ = cϕ̃ for some fixed ϕ̃ and c ∈ R, then

E[F (W + εΦ)− F (W )− εF (W )(ϕ ·W )T ] ∼ O(c2ε2). (2.7)
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Application to stochastic control

On a canonical basis (Ω,F ,F = (Ft)0≤t≤T ,P), a state variable X (ε) ∈ Rm

follows
dX

(ε)
t = at dt + bt(dWt + εϕt dt). (3.1)

Here, a, b are adapted processes, and ϕ is such that (ϕ ·W ) is a martingale.

A square-integrable random variable F (X (ε)) is a functional of the paths of
X (ε).

The control problem is

p := sup
ϕ∈A(Mf )

E

[
F (X (ε))− 1

2

∫ T

0

‖ϕt‖2 dt

]
, (3.2)

We suppose that, for small ε, the optimal control ϕ∗ will be small.

We expand the objective functional in (3.2) about ε = 0, considering F (X (ε))
as a functional of the perturbed Brownian motion W + ε

∫ ·
0
ϕs ds and

applying the Directional Derivative Lemma.
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Theorem

Let ε ∈ R be a small parameter. On the canonical basis (Ω,F , (Ft)t∈[0,T ],P),

define an m-dimensional Brownian motion W . Let Φ :=
∫ ·

0
ϕs ds ∈ Ω be such

that E[
∫ T

0
‖ϕt‖2 dt] <∞. Denote the set of such ϕ by A(Mf ). Let F (X (ε)) be a

square-integrable functional of the paths of the preturbed state process X (ε),
which follows (3.1). The control problem with value function (3.2) has asymptotic
value given by

p = E[F (X (0))] +
1

2
ε2E

[∫ T

0

‖ψt‖2 dt

]
+ O(ε4),

where ψ is the integrand in the martingale representation of F (X (0)) for ε = 0:

F (X (0)) = E[F (X (0))] +

∫ T

0

ψt · dWt . (3.3)
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Proof (sketch) I

Differentiate E[F (X (ε))] with respect to ε at ε = 0, and invoke the
martingale representation (3.3) of F (X (0)). This gives

E

[
F (X (ε))− 1

2

∫ T

0

‖ϕt‖2 dt

]

= E

[
F (X (0)) +

∫ T

0

(
εψt · ϕt −

1

2
‖ϕt‖2

)
dt

]
+ o(ε).

Maximise over ϕ by choosing ϕ = ϕ̂, given by

ϕ̂ := εψ, (3.4)

to give

E[F (X (0)] +
1

2
ε2E

[∫ T

0

‖ψt‖2 dt

]
+ O(ε4).

The remainder term is of order ε4 due to (2.7).
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Proof (sketch) II
We have maximised an approximation of the objective function. We need to
check that the result does indeed constitute an approximation to the full
control problem, to the same order in ε.

In simple terms, we have written a function J(ε, ϕ) as

J(ε, ϕ) = g(ε, ϕ) + O(ε2ϕ2),

where

g(ε, ϕ) = J(0, 0) + εϕψ − 1

2
ϕ2.

Maximising g with respect to ϕ gives ϕ = ϕ̂ = εψ, and then

J(ε, ϕ̂) = g(ε, ϕ̂) + O(ε4) = J(0, 0) +
1

2
ε2ψ2 + O(ε4).

But we need to show that

sup
ϕ

J(ε, ϕ) = g(ε, ϕ̂) + O(ε4).
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Proof (sketch) III

Consider maximising over ϕ, a smooth function J(ε, ϕ) given by

J(ε, ϕ) := f (x + εϕ)− 1

2
ϕ2.

The optimiser satisfies
ϕ∗ = εf ′(x + εϕ∗), (3.5)

and for ε = 0, ϕ∗ = 0. If we write

ϕ∗ = εϕ(1) + ε2ϕ(2) + ε3ϕ(3) + ε4ϕ(4) + O(ε5ϕ(5)),

then using this in (3.5) along with a Taylor expansion gives

ϕ∗ = εf ′(x)(1 + ε2f ′′(x)) + O(ε5).

Then the maximum has approximate value given by

J(ε, ϕ∗) = f (x) +
1

2
ε2(f ′(x))2 + O(ε4).
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Proof (sketch) IV

But this is the same value as is obtained by maximising the linear in ε
approximation to J(ε, ϕ).

J(ε, ϕ) = f (x) + εϕf ′(x)− 1

2
ϕ2 + O(ε2ϕ2),

which is maximised by ϕ̂ = εf ′(x), yielding

J(ε, ϕ̂) = f (x) +
1

2
ε2(f ′(x))2 + O(ε4),

so that J(ε, ϕ∗) = J(ε, ϕ̂) to order ε2, with the error being of order ε4 in
both cases.
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Proof (sketch) V

In the stochastic control problem, perform a similar (but more delicate)
analysis. The objective functional can be written as

E

[
F (W ) +

∫ T

0

(
ε∂F

(
W + ε

∫ ·
0

ϕs ds; (t,T ]

)
· ϕt −

1

2
‖ϕt‖2

)
dt

]
,

so the optimal control for the full problem satisfies

ϕ∗t = ε∂F

(
W + ε

∫ ·
0

ϕ∗s ds; (t,T ]

)
, 0 ≤ t ≤ T , (3.6)

which is the analogue of (3.5).

If F is Malliavin differentiable and we restrict to controls such that∫ ·
0
ϕs ds ∈ CM, then (3.6) becomes

ϕ∗t = εDtF

(
W + ε

∫ ·
0

ϕ∗s ds

)
, 0 ≤ t ≤ T .
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Proof (sketch) VI

Develop a Taylor expansion of the RHS of (3.6) by using variational
principles, considering perturbations of ϕ∗.

Use this to show that using the approximate control ϕ̂ in (3.4) does indeed
give the approximation to the full problem, to precision ε2, with error term of
order ε4.

�
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Dual control representation of indifference price I

On (Ω,F ,F = (Ft)0≤t≤TP), the discounted prices of d stocks are modelled
by a positive locally bounded semi-martingale S .

An agent trades S and maximises utility of terminal wealth, with the liability
of an FT -measurable claim payoff F :

uF
t (xt) := ess sup

θ∈Θt

E
[
−e−α(xt+

∫ T
t
θu· dSu−F)

∣∣∣Ft

]
, 0 ≤ t ≤ T , (4.1)

Denote the optimiser by θF . Set F ≡ 0 to recover corresponding objects in
the problem without the claim.

The utility indifference price process for the claim is p(α) defined by

uF
t (xt + pt(α)) = u0

t (xt), 0 ≤ t ≤ T . (4.2)

To invoke duality, introduce the conditional relative entropy process between
Q ∈Mf and P, as

It(Q|P) := EQ[log ZQ
t,T |Ft ], 0 ≤ t ≤ T . (4.3)
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Dual control representation of indifference price II
The dual problem to (4.1) is defined by

I Ft := ess inf
Q∈Mf

[
It(Q|P)− αEQ[F |Ft ]

]
, 0 ≤ t ≤ T . (4.4)

Denote the optimiser in (4.4) by QF .

Lemma

The indifference price process is given by the dual stochastic control representation

pt(α) = ess sup
Q∈Mf

[
EQ[F |Ft ]−

1

α
It(Q|Q0)

]
, 0 ≤ t ≤ T .

This follows from (a dynamic version of) the classical dual representation of
indifference prices (Delbaen et al (2002), Becherer (2003)):

pt(α) = ess sup
Q∈Mf

[
EQ[F |Ft ]−

1

α

(
It(Q|P)− It(Q0|P)

)]
, 0 ≤ t ≤ T , (4.5)
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Dual control representation of indifference price III

combined with the following result:

Proposition (Entropic distances are co-linear)

For Q ∈Mf , the conditional entropy process I satisfies

It(Q|P)− It(Q0|P) = It(Q|Q0), 0 ≤ t ≤ T . (4.6)

These results all stem from a dynamic version of the fundamental results of
Grandits and Rheinländer (2002), Kabanov and Stricker (2002), linking the
optimal strategy θF to the minimiser QF in the dual problem.
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Multi-dimensional Itô market

On (Ω,F ,F := (Ft)0≤t≤TP), with an m-dimensional Brownian motion W ,
d < m stock prices S = (S1, . . . ,Sd)> follow

dSt = diagd(St)[µS
t dt + σt dWt ], (5.1)

The d-dimensional vector µS and the (d ×m) matrix σ are F-progressively
measurable processes, such that the m-dimensional relative risk process

λt := σ>t (σtσ
>
t )−1µS

t , 0 ≤ t ≤ T , (5.2)

is well-defined.

A vector Y = (Y 1, . . . ,Y m−d)> of (m − d) non-traded factors follows

dYt = diagm−d(Yt)[µY
t dt + βt dWt ].
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Local martingale measures

Measures Q ∈Mf have density processes with respect to P of the form

ZQ
t = E(−q ·W )t , 0 ≤ t ≤ T , (5.3)

for some m-dimensional process q such that ZQ is a P-martingale, q satisfies

µS
t − σtqt = 0d , 0 ≤ t ≤ T , (5.4)

and the finite entropy condition gives

ΛQ := (q ·W Q) is a Q-martingale, for all Q ∈Mf . (5.5)

The market is incomplete, so there will be an infinite number of solutions q
to the equations (5.4). For q = λ we obtain the minimal martingale measure

QM , while the density process of the MEMM Q0 is ZQ0

= E(−q0 ·W ), for
some integrand q0.
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Q as a perturbation around Q0 I

We can write the Q-dynamics of Y as

dYt = diagm−d(Yt)[(µY
t − βtq0

t )dt + βt(dW Q
t − (qt − q0

t )dt)].

The point of this representation is that the Q-dynamics of Y can be
considered as a perturbation of the Q0-dynamics.

The entropy process between Q and Q0 is

It(Q|Q0) = EQ

[
1

2

∫ T

t

‖qu − q0
u‖2 du

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T . (5.6)
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Q as a perturbation around Q0 II
Introduce, for some small parameter ε, a parametrised family of measures
{Q(ε)}ε∈R, such that

Q ≡ Q(ε), Q0 ≡ Q(0), (5.7)

and set
q − q0 =: −εϕ, (5.8)

for some process ϕ. Since both q and q0 satisfy (5.4), we have

σϕ = 0d . (5.9)

Denote by A(Mf ) the set of such ϕ which correspond to Q ∈Mf , and also
define the process Φ :=

∫ ·
0
ϕs ds.

The Q(ε)-dynamics of the state variables S ,Y in this notation are then

dSt = diagd(St)σt dW
Q(ε)
t ,

dYt = diagm−d(Yt)[(µY
t − βtq0

t )dt + βt(dW
Q(ε)
t + εϕt)dt].

With state variable X := (S ,Y )>, we have dynamics of the form (3.1).
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Orthogonality between strategies and dual controls

The Q(ε)-dynamics of S , along with the constraint (5.9), lead to the following
orthogonality result.

Lemma

Consider integrands θ(ε), ϕ such that (θ(ε) · S) is a Q(ε)-martingale and ϕ satisfies
(5.9). Then the stochastic integrals (θ(ε) · S) and (ϕ ·W Q(ε)) are orthogonal
Q(ε)-martingales. That is,

EQ(ε)[(θ(ε) · S)T (ϕ ·W Q(ε))T ] = 0.

Note this holds for ε ∈ R, and in particular for ε = 0.
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Stochastic control problem for indifference price I

Let F be an FT -measurable square-integrable functional of the paths of
X = (S ,Y ), and hence of the Brownian paths, representing the payoff of a
European claim.

The Galtchouk-Kunita-Watanabe decomposition of F under Q(ε) is

F = EQ(ε)[F ] + (θ(ε) · S)T + (ξ(ε) ·W Q(ε))T , (5.10)

for some integrands θ(ε), ξ(ε), such that the stochastic integrals in (5.10) are
orthogonal Q(ε)-martingales, so we have

EQ(ε)[(θ(ε) · S)T (ξ(ε) ·W Q(ε))T ] = 0.

On using (5.6) and (5.8), the indifference price process, from its dual
stochastic control representation, is given as

pt(α) = sup
ϕ∈A(Mf )

EQ(ε)

[
F − ε2

2α

∫ T

t

‖ϕu‖2 du

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T .
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Stochastic control problem for indifference price II

If we choose

ε2 = α, (5.11)

then we get a control problem of the form

pt(α) = sup
ϕ∈A(Mf )

EQ(ε)

[
F − 1

2

∫ T

t

‖ϕu‖2 du

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T . (5.12)

subject to Q(ε)-dynamics of S ,Y

dSt = diagd(St)σt dW
Q(ε)
t ,

dYt = diagm−d(Yt)[(µY
t − βtq0

t )dt + βt(dW
Q(ε)
t + εϕt dt)],

such that ε = 0 gives the minimal entropy measure.
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Theorem

Let the payoff of the claim, F , be a square-integrable functional of the paths of
S ,Y . For small risk aversion α, the indifference price process of the claim has the
asymptotic expansion

pt(α) = EQ0

[F |Ft ] +
1

2
αEQ0

[∫ T

t

‖ξ(0)
u ‖2 du

∣∣∣∣∣Ft

]
+ O(α2), 0 ≤ t ≤ T ,

where Q0 is the minimal entropy martingale measure, and ξ(0) is the process in
the Kunita-Watanabe decomposition (5.10) of the claim, under Q(0) ≡ Q0.
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Remark
Using the Kunita-Watanabe decomoposition we can write the result as

pt(α) = EQ0

[F |Ft ]

+
1

2
α

(
varQ

0

[F |Ft ]− EQ0

[∫ T

t

‖θ(0)
u ‖2 d[S ]u

∣∣∣∣∣Ft

])
+ O(α2),

for t ∈ [0,T ], which highlights the mean-variance structure of the asymptotic
representation.

The Itô process framework here encompasses many well-known basis risk models,
and some less well-known examples, such as those with:

stochastic correlation and/or stochastic volatility,

drift uncertainty(partial information),

and multi-factor stochastic volatility models.
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Entropy minimisation in stochastic volatility model

Theorem

In the stochastic volatility model

dSt = σ(Yt)St (λ(Yt)dt + dWt) ,

dYt = a(Yt)dt + b(Yt)dW̃t ,

the relative entropy between the minimal entropy martingale measure QE and P,
in the limit that 1− ρ2 ≈ 1, is given as

I0(QE |P) = I0(QM |P)− 1

8
(1− ρ2)varQM [KT ] + O((1− ρ2)2),

where QM is the minimal martingale measure and K is the mean-variance
trade-off process

Kt :=

∫ t

0

λ2(Yu)du, 0 ≤ t ≤ T .
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Remark

In MM (2006,2007), Esscher transform relations between QE and QM are derived:

dQ̃E

dQ̃M

=
exp(θKT )

EQ̃M [exp(θKT )]
,

where θ = − 1
2 (1− ρ2) and Q̃E , Q̃M are the projections of QE ,QM onto

F̃T = σ(W̃t ; 0 ≤ t ≤ T ), and it is an exercise in asymptotic analysis to see that
those results are consistent with this theorem.
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Extensions

Lévy state dynamics.

Other types of variation applied to paths (Cont, Fournié, Dupire).

The paper is undergoing a revision and will appear shortly in a new guise at
www.maths.ox.ac.uk/~monoyios
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