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Goals

I Three desirable feature of a term structure model:
I Tractable pricing formulas (for zero-coupon bonds this is a

necessity, but clearly desirable also for more complicated
contracts such as swaptions)

I Nonnegative short rate
I Unspanned Stochastic Volatility

I Affine term structure models have great difficulty combining
these features

I Goal: Develop a framework where all these features are
naturally present

I Illustrate on swaption pricing
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Linear-Rational

Term Structure Models



State price density models

I Filtered probability space (Ω,F , (Ft)t≥0,P), P is historical
probability measure

I State price density: positive supermartingale (ζt)t≥0

I Model price at t of any claim C maturing at T :

ΠC (t,T ) :=
1

ζt
E [ζTC | Ft ]

This gives an arbitrage-free price system.

I Relation to short rate rt and pricing measure Q:

ζt ∝ e−
∫ t

0 rsds E
[
dQ
dP

∣∣∣ Ft

]
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State price density models

This approach was used by

I Constantinides (1992)

I Rogers (1997)

I Flesaker & Hughston (1996)

I Gabaix (2007)

I ...

How to tractably model ζt?
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Linear-Rational term structure models

Ingredients:
I Factor process X with state space E ⊂ Rd

I Positive function pζ on E
I Real parameter α

Non-normalized state price density:

ζt = e−αtpζ(Xt)

Key idea (Linear-Rational Term Structure model):

I pζ(x) = φ+ ψ>x , positive on E

I X with affine drift:

dXt = κ (θ − Xt) dt + dMt ,

where κ ∈ Rd×d , θ ∈ Rd , M is a martingale.
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Linear-Rational term structure models

Lemma. The conditional expectation of XT is

E [XT | Ft ] = θ + e−κ(T−t)(Xt − θ)

Consequences:

I Linear-rational (and explicit) bond price system:

P(t, t + τ) =
e−ατ

pζ(Xt)
E[pζ(Xt+τ ) | Ft ] = F (τ,Xt),

where F (τ, x) =
(φ+ ψ>θ)e−ατ + ψ>e−(α+κ)τ (x − θ)

φ+ ψ>x

I Linear-rational short rate: rt = α− ψ>κ (θ − Xt)

φ+ ψ>Xt
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Intrinsic choice of α

Define

α∗ = sup
x∈E

ψ>κ (θ − x)

φ+ ψ>x
α∗ = inf

x∈E

ψ>κ (θ − x)

φ+ ψ>x
.

I Should arrange so that α∗ <∞ to get rt bounded below

I With α = α∗, we get

rt ∈ [0, α∗ − α∗]

I For the model to be useful, this range must be wide enough



Unspanned Stochastic Volatility



Unspanned stochastic volatility in Linear-rational models

Empirical fact: Volatility risk cannot be hedged using bonds

I Collin-Dufresne & Goldstein (02): Interest rate swaps can
hedge only 10%–50% of variation in ATM straddles
(a volatility-sensitive instrument)

I Heidari & Wu (03): Level/curve/slope explain 99.5% of yield
curve variation, but 59.5% of variation in swaption implied vol

This phenomenon is called Unspanned Stochastic Volatility (USV).

In our Linear-Rational setting this is operationalized as:

Definition. The state process has unspanned factors if the
current state Xt cannot be inferred from {P(t, t + τ), τ ≥ 0}.
Equivalently, the map E 3 x 7→ F (·, x) is not injective.
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Unspanned stochastic volatility in Linear-rational models

Theorem. Assume that int(E ) 6= ∅ and that all eigenvalues of κ
are nonzero. The following are equivalent:

(i) The state process has unspanned factors

(ii) There exists u ∈ Rd \ {0} such that F (·, x) ≡ F (·, x + su) for
all x ∈ Rd and all s ∈ R

(iii) There exists u ∈ Rd \ {0} such that ψ>e−κτu = 0, all τ ≥ 0

Any u that works in (ii) also works in (iii), and vice versa.

Define the subspace U of unspanned directions:

U =
{

u ∈ Rd : ψ>e−κτu = 0 for all τ ≥ 0
}

The “number of unspanned factors” is the dimension of U.
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Unspanned stochastic volatility in Linear-rational models

When do we have unspanned factors?

Theorem. Let λ1, . . . , λn (n ≤ d) denote the distinct eigenvalues
of κ, and let m1, . . . ,mn be their geometric multiplicities. Then

dim U ≥ (m1 − 1) + · · ·+ (mn − 1).

If κ is diagonalizable with real eigenvalues, and ψ is not orthogonal
to any eigenspace Ker(λi − κ), i = 1, . . . , n, the above inequality
is in fact an equality.



Constructing models with USV

By previous theorem, need geometric multiplicity of eigenvalues
of κ. We can do this by adding factors to an initial model.

I Consider a d-factor Linear-Rational model

dX̂t = κ̂ (θ̂ − X̂t)dt + dM̂t , p̂ζ(x̂) = φ̂+ ψ̂>x̂ ,

with κ̂ unrestricted. Suppose this can capture the dynamics of
the yield curve (in practice, d = 3 is enough.)

I “Generically” (on a full-measure set of parameters), no
unspanned factors are present.

I Suppose want to include swaptions; need unspanned factors.

I Idea: Construct a (d + k)-factor model that is observationally
equivalent to a d-factor model when calibrated to bonds only.
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Constructing models with USV

Consider now a (d + k)-factor model on E ⊂ Rd+k of the form:

dXt = κ (θ − Xt)dt + dMt , pζ(x) = φ+ ψ>x .

Theorem. Let A : Rd+k → Rd be linear and define X̂ = AX .
Then

dX̂t = κ̂ (θ̂ − X̂t)dt + dM̂t , M̂ = AM,

if and only if Aκ = κ̂A and κ̂Aθ = κ̂θ̂.

Furthermore, let P(t,T ) and P̂(t,T ) be the respective bond
prices. Then

P(t,T ) = P̂(t,T ) for all 0 ≤ t ≤ T

if and only if φ̂ = φ and A>ψ̂ = ψ.
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The extended model (X , pζ) has unspanned factors:

Xt P(t, t + τ)

X̂t

F (τ, ·)

A

F̂ (τ, ·)

Hence for u ∈ Ker(A) we have

F (τ, x + su) = F (τ, x) for all τ ≥ 0, s ∈ R.

Therefore, dim U ≥ dim Ker(A) ≥ k .



Constructing models with USV

The extended model (X , pζ) has unspanned factors:

Xt P(t, t + τ)

X̂t

F (τ, ·)

A

F̂ (τ, ·)

Task: Find some A and a class of κ and κ̂ such that Aκ = κ̂A.
Any choice of θ, M then gives X̂ by setting

θ̂ = Aθ, M̂ = AM.

Given φ̂, ψ̂ we get φ, ψ by setting φ = φ̂, ψ = A>ψ̂.



Constructing models with USV

Example (d = 3, k = 1, first factor unspanned): Set

A =

 1 0 0 1
0 1 0 0
0 0 1 0

 ,

 X̂1

X̂2

X̂3

 = AX =

X1 + X4

X2

X3



Define

κ =


κ11 κ12 κ13

κ21 κ22 κ21 κ21

κ31 κ32 κ33 κ31

κ11

 , κ̂ =

 κ11 κ12 κ13

κ21 κ22 κ21

κ31 κ32 κ33


Then Aκ = κ̂A, and dim U = 1 for generic parameter values.

Note: κ only depends on 3× 3 = 9 parameters.
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Constructing models with USV

Example (d = 3, k = 2, first and second factors unspanned):

A =

 1 0 0 1 0
0 1 0 0 1
0 0 1 0 0

 ,

 X̂1

X̂2

X̂3

 = AX =

X1 + X4

X2 + X5

X3



Define

κ =


κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33 κ31 κ32

κ11 κ12

κ21 κ22

 , κ̂ =

 κ11 κ12 κ13

κ21 κ22 κ21

κ31 κ32 κ33



Then Aκ = κ̂A, and dim U = 2 for generic parameter values.
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Canonical representation

Theorem. Assume E = Rd
+, consider any linear-rational model

with interest rates bounded below. Then, w.l.o.g. one can take

pζ(x) = 1 + 1>mx ,

where 1m = (1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0) ∈ Rd .

The intrinsic choice α = α∗ yields rt ∈ [0, α∗ − α∗], where

α∗ = max
{

1>mκθ, −1>mκ1, . . . , −1>mκd
}

α∗ = min
{

1>mκθ, −1>mκ1, . . . , −1>mκd
}



Swaption pricing



Interest rate swaps

I Exchange a stream of fixed-rate for floating-rate payments

I Consider a tenor structure,

T0 < T1 < · · · < Tn, ∆ = Ti − Ti−1 fixed.

I Pre-determined swap rate K . At Ti , 1 ≤ i ≤ n,
I pay ∆K ,

I receive LIBOR, ∆L(Ti−1,Ti ) = ∆

(
1

P(Ti−1,Ti )
− 1

)
.

I Value of swap at t ≤ T0:

Πswap
t = P(t,T0)− P(t,Tn)︸ ︷︷ ︸

floating leg

−∆K
n∑

i=1

P(t,Ti )︸ ︷︷ ︸
fixed leg
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Swaptions

I Swaption = option to enter the swap at T = T0

I The value at expiry T is

CT =
(
Πswap
T

)+
=
( n∑

i=0

ciP(T ,Ti )
)+
,

where c0 = 1, c1 = · · · = cn−1 = −∆K , cn = −1−∆K .

I Hence its price at t ≤ T is

Πswpt
t =

1

ζt
E [ζTCT | Ft ] =

1

ζt
E
[
pswap(XT )+ | Ft

]
,

where the affine function pswap is given by

pswap(x) =
n∑

i=1

cie
−αTiEx [pζ(XTi−T )]
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Swaption pricing

I The swaption price is

Πswpt
t =

1

ζt

∫
Rd

pswap(x)+F (dx),

where F (dx) is law of (XT | Ft).

I For d ≥ 2 this is numerically challenging

I Use Fourier techniques to reduce to line integral:

Assume E[eµpswap(XT )] <∞ for some µ > 0. Then

Πswpt
t =

1

ζtπ

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ

where q̂(z) = E
[

exp
(

z pswap(XT )
) ∣∣∣ Ft

]
.
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Empirics



Data

I Swap rates and implied ATM swaption (Bachelier) volatilities
from Bloomberg

I Swap maturities Tn: 1Y, 2Y, 3Y, 5Y, 7Y, 10Y

I Swaptions: T = 3 month options on 1Y, 2Y, 3Y, 5Y, 7Y, 10Y
(forward starting) swaps

I 827 weekly observations, Jan 29, 1997 — Nov 28, 2012

I Estimation approach: Quasi-maximum likelihood in
conjunction with the (extended) Kalman filter



Calibration to swap rates

I 3-factor Linear-rational square-root (LRSQ) model:

dX̂t = κ̂(θ̂ − X̂t)dt + Diag(σ̂1

√
X̂1t , . . . , σ̂3

√
X̂3t) dŴt

p̂ζ(x̂) = 1 + 1>x̂

with κ̂ lower triangular for parsimony.

I Results:

κ̂ =

 0.07 0 0
−0.13 0.35 0

0.00 −0.41 0.91

 θ̂ =

0.97
0.36
0.16

 σ̂ =

0.40
0.33
0.10


I Range of short rates, rt ∈ [0, α∗ − α∗]:

α∗ − α∗ ≈ 0.97

Not a binding restriction.
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Calibration to swap rates
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Calibration to swap rates and swaptions

Two main challenges:

I Simultaneous fit to swaps and swaptions requires USV

=⇒ introduce unspanned factors

I Efficient swaption pricing is necessary for calibration to time
series data



Swaption pricing in the LRSQ model

I Recall swaption pricing formula:

Πswpt =
eαt

pζ(x)π

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ

where q̂(z) = Ex

[
exp

(
z pswap(XT )

)]
with pswap affine.
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exp
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z pswap(XT )
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I Exponential-affine transform formula: For any u ∈ C, v ∈ Cd ,

Ex

[
eu+v>Xt

]
= eΦ(t)+Ψ(t)>x , x ∈ Rd

+,

where (Φ,Ψ) solves the Riccati system Φ′ = (κθ)>Ψ Φ(0) = u

Ψ′i = −κ>i Ψ + 1
2σ

2
i Ψ2

i Ψi (0) = vi , i = 1, . . . , d



Swaption pricing in the LRSQ model

I Recall swaption pricing formula:

Πswpt =
eαt

pζ(x)π

∫ ∞
0

Re

[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ

where q̂(z) = Ex

[
exp

(
z pswap(XT )

)]
with pswap affine.

I Currently, we can compute the prices at ti , i = 1, . . . , 827, of
an ATM swaption in < 1 second in MATLAB on a standard
desktop computer, with relative error ≈ 0.1%.



Calibration to swap rates and swaptions

Unspanned factors:

I State space E = R3+k
+ ,

dXt = κ (θ − Xt)dt + Diag
(
σ1

√
X1t , . . . , σ3+k

√
X3+k,t

)
dWt

where κ ∈ R(3+k)×(3+k), θ ∈ R3+k
+ , σi > 0 (i = 1, . . . , 3 + k)

I If k = 1 we can take the first factor unspanned:

κ =


κ11

κ21 κ22 κ21

κ31 κ32 κ33 κ31

κ11


→ Two extra parameters (θ4, σ4) compared to 3-factor model.
→ One unspanned factor.

I Similarly, we can let first + second or all three factors be
unspanned (or other combinations)
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Calibration to swap rates and swaptions

Results for swap rates
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Calibration to swap rates and swaptions

Results for swaption implied volatilities
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Calibration to swap rates and swaptions

Camparing USV specifications (Std. dev. of pricing error):

1 2 3 4 5 6 7
0

5

10

15

specification

b
a

s
is

 p
o

in
ts

 

 

swaps

swaptions

Bars Factors unspanned Bars Factors unspanned

1 1st 5 1st and 3rd
2 2nd 6 2nd and 3rd
3 3rd 7 all three
4 1st and 2nd



Conclusion

I Processes with affine drift combined with an affine state price
density yield a large class of tractable term structure models:
The Linear-Rational term structure models.

I Unlike affine term structure models, we combine:

I Explicit bond prices, short rates, forward rates

I Both risk-neutral and historical dynamics (MPR, risk premie)

I Nonnegative short rates

I Simple ways to incorporate USV (crucial for fitting swaptions)

I Very fast swaption pricing

I Great fit to market data (swaps + swaptions)


