# Portfolio Optimisation under Transaction Costs

W. Schachermayer

University of Vienna Faculty of Mathematics

joint work with Ch. Czichowsky (Univ. Vienna), J. Muhle-Karbe (ETH Zürich)

We fix a strictly positive càdlàg stock price process  $S = (S_t)_{0 \le t \le T}$ .

For  $0 < \lambda < 1$  we consider the bid-ask spread  $[(1 - \lambda)S, S]$ .

A self-financing trading strategy is a predictable, finite variation process  $\varphi = (\varphi_t^0, \varphi_t^1)_{0 \le t \le T}$  such that

$$d\varphi_t^0 \leq -S_t (d\varphi_t^1)_+ + (1-\lambda)S_t (d\varphi_t^1)_-$$

 $\varphi$  is called 0-admissible if

$$\varphi_t^0 + (1-\lambda)S_t(\varphi_t^1)_+ - S_t(\varphi_t^1)_- \ge 0$$

We fix a strictly positive càdlàg stock price process  $S = (S_t)_{0 \le t \le T}$ .

For  $0 < \lambda < 1$  we consider the bid-ask spread  $[(1 - \lambda)S, S]$ .

A self-financing trading strategy is a predictable, finite variation process  $\varphi = (\varphi_t^0, \varphi_t^1)_{0 \le t \le T}$  such that

$$darphi_t^0 \leq -S_t(darphi_t^1)_+ + (1-\lambda)S_t(darphi_t^1)_-$$

 $\varphi$  is called 0-admissible if

$$arphi_t^0 + (1-\lambda)S_t(arphi_t^1)_+ - S_t(arphi_t^1)_- \geq 0$$

# Definition [Jouini-Kallal ('95), Cvitanic-Karatzas ('96), Kabanov-Stricker ('02),...]

A consistent-price system is a pair  $(\tilde{S}, Q)$  such that  $Q \sim \mathbb{P}$ , the process  $\tilde{S}$  takes its value in  $[(1 - \lambda)S, S]$ , and  $\tilde{S}$  is a Q-martingale.

Identifying Q with its density process

$$Z^0_t = \mathbb{E}\left[rac{dQ}{d\mathbb{P}}|\mathcal{F}_t
ight], \qquad 0 \leq t \leq T$$

we may identify  $(\tilde{S}, Q)$  with the  $\mathbb{R}^2$ -valued martingale  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  such that

$$ilde{S} := rac{Z^1}{Z^0} \in \left[ (1-\lambda)S, S 
ight].$$

(日) (同) (三) (三) (三) (○) (○)

For  $0 < \lambda < 1$ , we say that S satisfies  $(CPS^{\lambda})$  if there is a consistent price system for transaction costs  $\lambda$ .

# Definition [Jouini-Kallal ('95), Cvitanic-Karatzas ('96), Kabanov-Stricker ('02),...]

A consistent-price system is a pair  $(\tilde{S}, Q)$  such that  $Q \sim \mathbb{P}$ , the process  $\tilde{S}$  takes its value in  $[(1 - \lambda)S, S]$ , and  $\tilde{S}$  is a Q-martingale.

Identifying Q with its density process

$$Z^0_t = \mathbb{E}\left[rac{dQ}{d\mathbb{P}}|\mathcal{F}_t
ight], \qquad 0 \leq t \leq T$$

we may identify  $(\tilde{S}, Q)$  with the  $\mathbb{R}^2$ -valued martingale  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  such that

$$ilde{S}:=rac{Z^1}{Z^0}\in \left[(1-\lambda)S,S
ight].$$

(日) (同) (三) (三) (三) (○) (○)

For  $0 < \lambda < 1$ , we say that S satisfies  $(CPS^{\lambda})$  if there is a consistent price system for transaction costs  $\lambda$ .

# Remark [Guasoni, Rasonyi, S. ('08)]

If the process  $S = (S_t)_{0 \le t \le T}$  is *continuous* and has *conditional full* support, then  $(CPS^{\mu})$  is satisfied, for all  $\mu > 0$ . For example, exponential fractional Brownian motion verifies this property.

The set of non-negative claims attainable at price x is

$$\mathcal{C}(x) = \begin{cases} X_T \in L^0_+ : \text{there is a } 0-\text{admissible } \varphi = (\varphi^0_t, \varphi^1_t)_{0 \le t \le T} \\ \text{starting at } (\varphi^0_0, \varphi^1_0) = (x, 0) \text{ and ending at} \\ (\varphi^0_T, \varphi^1_T) = (X_T, 0) \end{cases}$$

Given a utility function  $U: \mathbb{R}_+ \to \mathbb{R}$  define

$$u(x) = \sup\{\mathbb{E}[U(X_T)] : X_T \in \mathcal{C}(x)\}.$$

Cvitanic-Karatzas ('96), Deelstra-Pham-Touzi ('01), Cvitanic-Wang ('01), Bouchard ('02),...

What are conditions ensuring that C(x) is closed in  $L^0_+(\mathbb{P})$ . (w.r. to convergence in measure) ?

#### Theorem [Cvitanic-Karatzas ('96), Campi-S. ('06)]:

Suppose that  $(CPS^{\mu})$  is satisfied, for all  $\mu > 0$ , and fix  $\lambda > 0$ . Then  $C(x) = C^{\lambda}(x)$  is closed in  $L^{0}$ .

#### Theorem [Guasoni, Rasonyi, S. ('08)]:

Let  $S = (S_t)_{0 \le t \le T}$  be a continuous process. TFAE (*i*) For each  $\mu > 0$ , S does not allow for arbitrage under transaction costs  $\mu$ .

(ii) For each  $\mu > 0$ , (CPS<sup> $\mu$ </sup>) holds, i.e. consistent price systems under transaction costs  $\mu$  exist.

What are conditions ensuring that C(x) is closed in  $L^0_+(\mathbb{P})$ . (w.r. to convergence in measure) ?

# Theorem [Cvitanic-Karatzas ('96), Campi-S. ('06)]:

Suppose that  $(CPS^{\mu})$  is satisfied, for all  $\mu > 0$ , and fix  $\lambda > 0$ . Then  $C(x) = C^{\lambda}(x)$  is closed in  $L^{0}$ .

### Theorem [Guasoni, Rasonyi, S. ('08)]:

Let S = (S<sub>t</sub>)<sub>0≤t≤T</sub> be a continuous process. TFAE
(i) For each μ > 0, S does not allow for arbitrage under transaction costs μ.
(ii) For each μ > 0, (CPS<sup>μ</sup>) holds, i.e. consistent price systematics

under transaction costs  $\mu$  exist.

What are conditions ensuring that C(x) is closed in  $L^0_+(\mathbb{P})$ . (w.r. to convergence in measure) ?

Theorem [Cvitanic-Karatzas ('96), Campi-S. ('06)]:

Suppose that  $(CPS^{\mu})$  is satisfied, for all  $\mu > 0$ , and fix  $\lambda > 0$ . Then  $C(x) = C^{\lambda}(x)$  is closed in  $L^{0}$ .

# Theorem [Guasoni, Rasonyi, S. ('08)]:

Let  $S = (S_t)_{0 \le t \le T}$  be a continuous process. TFAE (*i*) For each  $\mu > 0$ , S does not allow for arbitrage under transaction costs  $\mu$ .

(ii) For each  $\mu > 0$ , (*CPS*<sup> $\mu$ </sup>) holds, i.e. consistent price systems under transaction costs  $\mu$  exist.

# Definition

We denote by D(y) the convex subset of  $L^0_+(\mathbb{P})$ 

$$D(y) = \{yZ^0_T = y rac{dQ}{d\mathbb{P}}, ext{ for some consistent price system } ( ilde{S}, Q)\}$$

and

$$\mathcal{D}(y) = \overline{sol \ (D(y))}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

the closure of the solid hull of D(y) taken with respect to convergence in measure.

# Definition [Kramkov-S. ('99), Karatzas-Kardaras ('06), Campi-Owen ('11),...]

We call a process  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  a super-martingale deflator if  $Z_0^0 = 1, \frac{Z^1}{Z^0} \in [(1 - \lambda)S, S]$ , and for each 0-admissible, self-financing  $\varphi$  the value process

$$\varphi_t^0 Z_t^0 + \varphi_t^1 Z_t^1 = Z_t^0 (\varphi_t^0 + \varphi_t^1 \frac{Z_t^1}{Z_t^0})$$

### is a super-martingale.

#### Remark

A consistent price system  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  is a super-martingale deflator.

#### Proposition

The closure  $\mathcal{D}(y)$  of D(y) can be characterized as

$$\mathcal{D}(y) = \{ yZ_T^0 : Z = (Z_t^0, Z_t^1)_{0 \le t \le T} \text{ a super-martingale deflator} \}_{0 \le t \le T}$$

# Definition [Kramkov-S. ('99), Karatzas-Kardaras ('06), Campi-Owen ('11),...]

We call a process  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  a super-martingale deflator if  $Z_0^0 = 1, \frac{Z^1}{Z^0} \in [(1 - \lambda)S, S]$ , and for each 0-admissible, self-financing  $\varphi$  the value process

$$\varphi_t^0 Z_t^0 + \varphi_t^1 Z_t^1 = Z_t^0 (\varphi_t^0 + \varphi_t^1 \frac{Z_t^1}{Z_t^0})$$

### is a super-martingale.

## Remark

A consistent price system  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  is a super-martingale deflator.

#### Proposition

The closure  $\mathcal{D}(y)$  of D(y) can be characterized as

$$\mathcal{D}(y) = \{ yZ_T^0 : Z = (Z_t^0, Z_t^1)_{0 \le t \le T} \text{ a super-martingale deflator} \} \Big|_{\mathcal{D} \in \mathcal{C}}$$

# Definition [Kramkov-S. ('99), Karatzas-Kardaras ('06), Campi-Owen ('11),...]

We call a process  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  a super-martingale deflator if  $Z_0^0 = 1, \frac{Z^1}{Z^0} \in [(1 - \lambda)S, S]$ , and for each 0-admissible, self-financing  $\varphi$  the value process

$$\varphi_t^0 Z_t^0 + \varphi_t^1 Z_t^1 = Z_t^0 (\varphi_t^0 + \varphi_t^1 \frac{Z_t^1}{Z_t^0})$$

### is a super-martingale.

### Remark

A consistent price system  $Z = (Z_t^0, Z_t^1)_{0 \le t \le T}$  is a super-martingale deflator.

# Proposition

The closure  $\mathcal{D}(y)$  of D(y) can be characterized as

$$\mathcal{D}(y) = \{ y Z_T^0 : \ Z = (Z_t^0, Z_t^1)_{0 \le t \le T} \text{ a super-martingale deflator} \} \mid_{\text{DQ}}$$

# Theorem (Czichowsky, Muhle-Karbe, S. ('12))

Let S be a càdlàg process,  $0 < \lambda < 1$ , suppose that  $(CPS^{\mu})$  holds true, for some  $0 < \mu < \lambda$ , suppose that U has reasonable asymptotic elasticity and  $u(x) < U(\infty)$ , for  $x < \infty$ . Then C(x) and D(y) are polar sets:

$$\begin{array}{ll} X_T \in \mathcal{C}(x) & \text{iff } \langle X_T, Y_T \rangle \leq xy, & \text{for } Y_T \in \mathcal{D}(y) \\ Y_T \in \mathcal{D}(y) & \text{iff } \langle X_T, Y_T \rangle \leq xy, & \text{for } X_T \in \mathcal{C}(y) \end{array}$$

Therefore by the abstract results from [Kramkov-S. ('99)] the duality theory for the portfolio optimisation problem works as nicely as in the frictionless case: for x > 0 and y = u'(x) we have

- (*i*) There is a unique primal optimiser  $\hat{X}_{\mathcal{T}}(x) = \hat{\varphi}_{\mathcal{T}}^0$  which is the terminal value of a trading strategy  $(\hat{\varphi}_t^0, \hat{\varphi}_t^1)_{0 \le t \le \mathcal{T}}$ .
- (*i'*) There is a unique dual optimiser  $\hat{Y}_T(y) = \hat{Z}_T^0$ which is the terminal value of a super-martingale deflator  $(\hat{Z}_t^0, \hat{Z}_t^1)_{0 \le t \le T}$ .

(*ii*) 
$$U'(\hat{X}_T(x)) = \hat{Z}_t^0(y), \qquad -V'(\hat{Z}_T(y)) = \hat{X}_T(x)$$

(iii) The process  $(\hat{\varphi}_t^0 \hat{Z}_t^0 + \hat{\varphi}_t^1 \hat{Z}_t^1)_{0 \le t \le T}$  is a martingale, and therefore  $\{d\hat{\varphi}_t^0 > 0\} \subseteq \{\frac{\hat{Z}_t^1}{\hat{Z}_t^0} = (1 - \lambda)S_t\},$ 

$$\{d\hat{\varphi}_t^0 < 0\} \subseteq \{rac{\hat{Z}_t^1}{\hat{Z}_t^0} = S_t\},$$

etc. etc.

## Theorem [Cvitanic-Karatzas ('96)]

In the setting of the above theorem suppose that  $(\hat{Z}_t)_{0 \le t \le T}$  is a local martingale.

Then  $\hat{S} = \frac{\hat{Z}^1}{\hat{Z}^0} \in [(1 - \lambda)S, S]$  is a shadow price, i.e. the optimal portfolio for the *frictionless market*  $\hat{S}$  and for the *market* S under transaction costs  $\lambda$  coincide.

#### Sketch of Proof

Suppose (w.l.g.) that  $(\hat{Z}_t)_{0 \le t \le T}$  is a true martingale. Then  $\frac{d\hat{Q}}{d\mathbb{P}} = \hat{Z}_T^0$  defines a *probability measure* under which the process  $\hat{S} = \frac{\hat{Z}_T^0}{\hat{Z}_T^0}$  is a martingale. Hence we may apply the frictionless theory to  $(\hat{S}, \mathbb{P})$ .  $\hat{Z}_T^0$  is (a fortiori) the dual optimizer for  $\hat{S}$ . As  $\hat{X}_T$  and  $\hat{Z}_T^0$  satisfy the first order condition

$$U'(\hat{X}_T) = \hat{Z}_T^0,$$

 $\hat{X}_{\mathcal{T}}$  must be the optimizer for the frictionless market  $\hat{S}$  too.

÷

## Theorem [Cvitanic-Karatzas ('96)]

In the setting of the above theorem suppose that  $(\hat{Z}_t)_{0 \le t \le T}$  is a local martingale.

Then  $\hat{S} = \frac{\hat{Z}^1}{\hat{Z}^0} \in [(1 - \lambda)S, S]$  is a shadow price, i.e. the optimal portfolio for the *frictionless market*  $\hat{S}$  and for the *market* S under transaction costs  $\lambda$  coincide.

#### Sketch of Proof

Suppose (w.l.g.) that  $(\hat{Z}_t)_{0 \le t \le T}$  is a true martingale. Then  $\frac{d\hat{Q}}{d\mathbb{P}} = \hat{Z}_T^0$ defines a *probability measure* under which the process  $\hat{S} = \frac{\hat{Z}_1^1}{\hat{Z}_1^0}$  is a martingale. Hence we may apply the frictionless theory to  $(\hat{S}, \mathbb{P})$ .  $\hat{Z}_T^0$  is (a fortiori) the dual optimizer for  $\hat{S}$ . As  $\hat{X}_T$  and  $\hat{Z}_T^0$  satisfy the first order condition

$$U'(\hat{X}_T) = \hat{Z}_T^0,$$

 $\hat{X}_{T}$  must be the optimizer for the frictionless market  $\hat{S}$  too.

When is the dual optimizer  $\hat{Z}$  a *local martingale*? Are there cases when it only is a *super-martingale*?

# Theorem [Czichowsky-S. ('12)]

Suppose that *S* is *continuous* and satisfies (*NFLVR*), and suppose that *U* has reasonable asymptotic elasticity. Fix  $0 < \lambda < 1$  and suppose that  $u(x) < U(\infty)$ , for  $x < \infty$ . Then the dual optimizer  $\hat{Z}$  is a local martingale. Therefore  $\hat{S} = \frac{\hat{Z}^1}{\hat{Z}^0}$  is a shadow price.

#### Remark

The condition (*NFLVR*) cannot be replaced by requiring (*CPS*<sup> $\lambda$ </sup>), for each  $\lambda > 0$ .

# Theorem [Czichowsky-S. ('12)]

Suppose that *S* is *continuous* and satisfies (*NFLVR*), and suppose that *U* has reasonable asymptotic elasticity. Fix  $0 < \lambda < 1$  and suppose that  $u(x) < U(\infty)$ , for  $x < \infty$ . Then the dual optimizer  $\hat{Z}$  is a local martingale. Therefore  $\hat{S} = \frac{\hat{Z}^1}{\hat{Z}^0}$  is a shadow price.

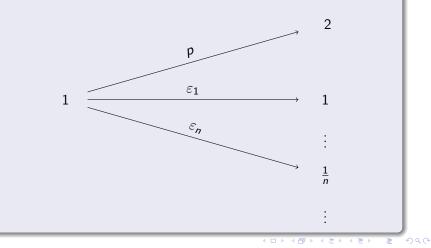
### Remark

The condition (*NFLVR*) cannot be replaced by requiring (*CPS*<sup> $\lambda$ </sup>), for each  $\lambda > 0$ .

Examples

# Frictionless Example [Kramkov-S. ('99)]

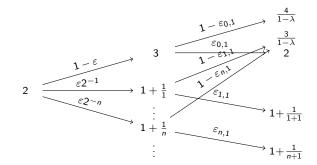
Let  $U(x) = \log(x)$ . The stock price  $S = (S_t)_{t=0,1}$  is given by



Here 
$$\sum_{n=1}^{\infty} \varepsilon_n = 1 - p \ll 1$$
.  
For  $x = 1$  the optimal strategy is to buy one stock at time 0 i.e.  
 $\hat{\varphi}_1^1 = 1$ .

Let  $A_n = \{S_1 = \frac{1}{n}\}$  and consider  $A_{\infty} = \{S_1 = 0\}$  so that  $\mathbb{P}[A_n] = \varepsilon_n > 0$ , for  $n \in \mathbb{N}$ , while  $\mathbb{P}[A_{\infty}] = 0$ .

Intuitively speaking, the constraint  $\hat{\varphi}_1^1 \leq 1$  comes from the null-set  $A_{\infty}$  rather than from any of the  $A_n$ 's. It turns out that the dual optimizer  $\hat{Z}$  verifies  $\mathbb{E}[\hat{Z}_1] < 1$ , i.e. only is a super-martingale. Intuitively speaking, the optimal measure  $\hat{Q}$  gives positive mass to the  $\mathbb{P}$ -null set  $A_{\infty}$  (compare Cvitanic-Schachermayer-Wang ('01), Campi-Owen ('11)). Discontinuous Example under transaction costs  $\lambda$  (Czichowsky, Muhle-Karbe, S. ('12), compare also Benedetti, Campi, Kallsen, Muhle-Karbe ('11)).



For x = 1 it is optimal to buy  $\frac{1}{1+\lambda}$  many stocks at time 0. Again, the constraint comes from the  $\mathbb{P}$ -null set  $A_{\infty} = \{S_1 = 1\}$ .

There is no shadow-price. The intuitive reason is again that the binding constraint on the optimal strategy comes from the  $\mathbb{P}$ -null set  $A_{\infty} = \{S_1 = 1\}_{\mathbb{P}}$ 

Continuous Example under Transaction Costs [Czichowsky-S. ('12)]

Let  $(W_t)_{t\geq 0}$  be a Brownian motion, starting at  $W_0 = w > 0$ , and

$$\tau = \inf\{t : W_t - t \le 0\}$$

Define the stock price process

$$S_t = e^{t \wedge \tau}, \qquad t \geq 0.$$

*S* does not satisfy (*NFLVR*), but it does satisfy (*CPS*<sup> $\lambda$ </sup>), for all  $\lambda > 0$ . Fix  $U(x) = \log(x)$ , transaction costs  $0 < \lambda < 1$ , and the initial endowment  $(\varphi_0^0, \varphi_0^1) = (1, 0)$ .

For the trade at time t = 0, we find three regimes determined by thresholds  $0 < \underline{w} < \overline{w} < \infty$ .

(*i*) if  $w \leq \underline{w}$  we have  $(\hat{\varphi}_{0_+}^0, \hat{\varphi}_{0_+}^1) = (1, 0)$ , i.e. no trade. (*ii*) if  $\underline{w} < w < \overline{w}$  we have  $(\hat{\varphi}_{0_+}^0, \hat{\varphi}_{0_+}^1) = (1 - a, a)$ , for some  $0 < a < \frac{1}{\lambda}$ . (*iii*) if  $w \geq \overline{w}$ , we have  $(\hat{\varphi}_{0_+}^0, \hat{\varphi}_{0_+}^1) = (1 - \frac{1}{\lambda}, \frac{1}{\lambda})$ , so that the liquidation value is zero (maximal leverage).

We now choose  $W_0 = w$  with  $w > \overline{w}$ . Note that the optimal strategy  $\hat{\varphi}$  continues to increase the position in stock, as long as  $W_t - t \ge \overline{w}$ .

If there were a shadow price  $\hat{S}$ , we therefore necessarily would have

$$\hat{S}_t = e^t$$
, for  $0 \le t \le \inf\{u : W_u - u \le \bar{w}\}$ .

But this is absurd, as  $\hat{S}$  clearly does not allow for an e.m.m.

# Problem

Let  $(B_t^H)_{0 \le t \le T}$  be a fractional Brownian motion with Hurst index  $H \in [0, 1[\setminus \{\frac{1}{2}\}]$ . Let  $S = \exp(B_t^H)$ , and fix  $\lambda > 0$  and  $U(x) = \log(x)$ . Is the dual optimiser a local martingale or only a super-martingale? Equivalently, is there a shadow price  $\hat{S}$ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●